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Abstract. As the use of electronic documents are becoming more pop-
ular, people want to find documents completely or partially duplicate. In
this paper, we propose a near duplicate text detection framework using
signatures to save space and query time. We also propose a novel signa-
ture selection algorithm which uses collection frequency of g-grams. We
compare our algorithm with Winnowing, which is one of the state-of-the-
art signature selection algorithms. We show that our algorithm acquires
much better accuracy with less time and space cost. We perform exten-
sive experiments to verify our conclusion.
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1 Introduction

It is now a common practice to use electronic documents in business communica-
tions (e.g., Web pages, word documents) and personal life (e.g., emails), as these
digital documents are easy and cost-effective to store, retrieve and share. Given
a collection of such documents, it is often needed to find documents that are
nearly duplicate from a given query document either completely or partially. We
call this the near duplicate text detection problem, and it has wide applications
such as copyright enforcement, plagiarism detection, and version control.

To scale to large collection of document, the prevalent method for near du-
plicate text detection is based on signatures: a set of signatures are extracted
and indexed for the documents at indexing time, and at query time, the query
document’s signatures are produced in the same manner; this generates a set of
candidate texts which will be finally compared with the query document. How-
ever, many of the existing methods, such as (mod p) = 0 scheme [13], local
maximum [2], spotSig [I9] and I-match [7], are based on heuristics that cannot
even guarantee 100% detection of exact copies.

In this paper, we first propose a general framework for the problem based
on the Winnowing-family algorithms [I7], which have the locality property that
ezract copies exceeding a certain length are guaranteed to be detected. In order
to quantify the ability to detect near duplicate copies (i.e., copying with a small
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amount of errors). we propose a novel and useful concept, k-stability. We com-
pute the k-stability for all Winnowing-family algorithms and the result reveals
that the original Winnowing algorithm trades quality (i.e., recall) for better ef-
ficiency. We then proposed a simple yet effective variation of the Winnowing
algorithm, named frequency biased Winnowing, which achieves both good effi-
ciency and high quality. We also consider candidate text generation methods as
well as optimizations to further reduce the number of similarity computations.
We experimentally evaluated our method in a plagarism detection benchmark,
and our method is shown to achieve higher recall with the superior time and
indexing space efficiency than the method based on the original Winnowing.
The rest of the paper is organized as follows: Section [2] gives the problem defi-
nition and notations. Section Blintroduces our proposed framework. Section [ an-
alyzes the k-stability of Winnowing-family algorithms and proposes an improved
signature selection method based on collection frequencies. Section [l introduces
the candidate text generation method and Section [0] gives an effective improve-
ment by eliminating unnecessary computations. Section [shows experimental re-
sults. Related works are introduced in Section[8land Section@concludes the paper.

2 Problem Definition and Notations

We first give the formal definition of near duplicate text detection problem.

Definition 1 (Near Duplicate Text Detection). Given a collection C of
documents and a query document @, a near duplicate text detection algorithm
will return the best near duplicate text of Q in C, indicated by d € C and the start
and end positions of the text in d (denoted by poSstart and posend), respectively.

Although the precise definition of near duplicate is application-dependent,
in most cases they are evaluated by a similarity function, which returns high
scores when two text strings share a large portion of identical or highly similar
substrings [18].

Note that the above problem definition is general enough to support sev-

eral important applications. For example, the near duplicate document detection
problem [I7] can be deemed as a special case where the starting and ending
positions are always the beginning and the end of the documents, respectively.
For another example, the text reuse problem [I8/23] can be solved by issuing
multiple near duplicate text detection queries, each with a sentence as the query
document.
Notations. All array indexes start from 1. Given a string T, len(T") denotes its
length. T has len(T) — ¢ + 1 g-grams, which forms its g-gram set and is denoted
as gramsy. The cardinality of a (multi-)set S is denoted by |S]. Given a ¢-gram
g in a document, pos, denotes the offset of its first character in the document.

3 A Framework of Near Duplicate Text Deteciton

Obviously, the naive algorithm which performs character-to-character compari-
son between () and every document d € C is too costly and does not scale well
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with the size of the document collection. Existing works are mainly based on
selecting a small set of candidates C’ C C by extracting and matching document
signatures [I8]. The most prevalent form of signatures are g-grams, which are
substring of ¢ characters. A document of length [ will generate [ — ¢+ 1 overlap-
ping ¢g-grams, and usually only a subset of them will be selected as the signatures

of

the document by a signature selection process.
We capture such approaches in a general framework as follows:

In the indexing phase, for each document d in C, a set of signatures is selected
from its ¢-grams. The signature selection method (denoted as SelectSigs in
Algorithm [ and discussed in Section []) could be any algorithm that will be
introduced in Section B including Winnowing [17] and our frequency biased
Winnowing. An inverted index, I, is then built that maps a signature to each
of its occurrences (identified by document ID and the position within the
document).

In the query processing phase (See Algorithm[Il), a set of signatures S, is se-
lected using the same signature selection method SelectSigs(Line 3). All the
occurrences of each signature are collected via probing the index I, and then
grouped by document (Lines 4-6). For each document returned, several can-
didate texts will be generated by the GenCandTexts function (to be discussed
in Section ) and stored in CAN D (Lines 7-8). Similarities between the query
and each candidate text will be calculated (Lines 9-10) and the one achieving
the maximum similarity will be returned (Line 11).

Algorithm 1. Query(Q)

1 CAND + 0;
2 Initialize sim and G to be empty hashtables;

10

11

/* select (Q’s signatures */
Sy < SelectSigs(Q);
/* find and group all occurrences of ()’s signatures by document  */
for each signature s € Sq do
for each pair (d;,pos;) € I[s] do
Gldi] < G[di] U {pos; };

/* generate candidate texts for each candidate document */
for each d; € G do
CAND <+ CAND U GenCandTexts(G[di]);

/* find the best candidate text */
for each candidate c; € CAND do
sim[c;] < CalcSim(Q, ¢i);

return argmax, ccanp $9m[ci];

The function CalcSim computes the similarity of a candidate text ¢; against

the query Q. In this paper, we consider one-sided Jaccard of ¢g-gram multisets

of

¢; and @, or
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sim(ci, Q) = |[grams., N gramsg|

|gramsg|

We break ties by favoring the shortest text.

4 Signature Selection Algorithms

While it is possible to select all the g-grams of a document as its signatures, this
usually results in too many comparisons in practice due to the existence of some
frequently occurring g-grams. On the other hand, selecting very few g-grams
tends to miss many of the query results, or limit the flexibility of the algorithm
(e.g., can only detect near duplicate sentences [23] or documents [15]). Hence,
the signature selection process is a trade-off between efficiency, space and effec-
tiveness (specifically recall). While many heuristic selection methods exists (such
as [I9I18)23]), we consider the Winnowing-family algorithms [I7], as it has the
guarantee that exact copy of substrings exceeding a certain length will always
be detected.

In this section, we first briefly introduce and analyze Winnowing-family al-
gorithms, including the original Winnowing method, and then identify a novel
concept of k-stability, which is essential to quantifies the probability that a near
duplicate text will be detected under the Winnowing-family algorithms. We then
point out the limitation of the original Winnowing algorithm due to a dilemma
between high stability and low efficiency. Finally, we propose a simple yet effec-
tive alternative Winnowing-based algorithm, named Frequency Biased Winnow-
ing, that achieves a better trade-off than the original Winnowing method.

4.1 Winnowing-Family Algorithms

A Winnowing-family algorithm firstly calculates f(g;) for all the ¢g-grams g; in
the document using an injective function f(x). It then uses a sliding window of
size w to select signatures. Within each window, it selects the g-gram ¢, such
that f(gmin) is the smallest in the window, as the signature. If there is a tie,
then the rightmost occurrence will be selected.

Ezample 1. Let g = 3 and w = 4. Consider the document “abcdedcba”, whose
q-grams are: {abc,bcd, cde, ded, edc, dcb, cba}. Assume f(x) = (c1 - 7> + co -
7 + ¢3) mod 23, where ¢; indicates the ASCII code of the i-th character of the
q-gram. Then the corresponding values are {1,14,4,15,20,7,17}.

Given w = 4, we have four windows: (1, 14, 4, 15), (14, 4, 15, 20), (4, 15,
20, 7), and (15, 20, 7, 17). q-grams corresponding to underlined bold numbers
are signatures selected in each window. Thus, abc, cde and dcb with values 1,
4 and 7 will be selected as the signatures of the document.

The original Winnowing algorithm [I7] belongs to this Winnowing-family by
using a random hash function with a sufficiently large codomain as f(z). Later in
Section 3] we will propose another frequency biased instance of the Winnowing-
family algorithms.
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Winnowing-family algorithms hold an important property named locality. An
algorithm is [-local if, for any two identical strings with length at least [, they
will always have at least one identical signature and thus will be guaranteed to
be detected by the algorithm. This property is essential to detect exact copying.
Consider two identical strings of length [ = w + ¢ — 1 where w is the win-
dow size. It is obvious that a Winnowing-family algorithm will always select the
same minimum-valued g-gram in the windows as signatures. Therefore, all the
Winnowing-family algorithms are (w + ¢ — 1)-local.

4.2 k-Stability of Winnowing-Family Algorithms

While the locality property of Winnowing-family algorithms is essential for ezact
duplicate text detection, it does not help to analyze the performance of the al-
gorithm for near duplicate text detection, which is arguably the more common
and difficult case. To this end, we propose a novel concept named k-stability,
which capture the ability for a Winnowing-family algorithm to detect text with
small (or k) errors.

Definition 2 (k-stability of Winnowing-family algorithms). Given a
Winnowing-family algorithm M, consider randomly and independently chang-
ing k g-grams in a window W, which results in W'. The k-stability is the ex-
pected probability of that the signatures of W and W' are the same under the
algorithm M .

Obviously, the k-stability depends on content of the window W. In order to
get a general, closed-formula characterization for an algorithm, in the following,
we compute the k-stability for a window where its constituent ¢-grams are ran-
domly and independently selected from the entire document collection (e.g., the
distribution g-grams in the window are the same as those in the collection).

First, we establish the following Lemma.

Lemma 1. For any discrete random variable X with possible values {x1,xa,
..y Zn}, the following equation holds for sufficiently large t > 0:

n

(ot (Fleo) P57y

1
T+

where p(z;) is the probability mass function and F(x;) is the cumulative distri-
bution function, i.e., F(x;) =>"_ p(x;).

Proof. Without loss of generality, we assume z; < z;+1. We also additionally
define g, such that xg < z1, and F(z¢) = p(xo) = 0.
Consider a function

0 , when y < xg
a—b + bri—a-xi_1

Fe(y) =9 ..%%, v+ o 5" ,whenziy <y<uwz,i€[ln]
1 , when y > x,
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where a = ”i/(t +1)- (F(x;) — p(gi))t -F(z;), and b =
W+ (P = "§0) Flai)

Since F.(y) is monotonous, bounded and right continuous, there must exist a
random variable Y such that F.(y) is the cumulative distribution function of Y.
Then for any z; < x; < x,,, we have:

xT

_ p(xi) . (F(.Z‘Z) _ p(xi))t

[ 0w Ry = 1w R ) X

Ti—1

where p.(y) is the probability density function of Y. Then we have:
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Theorem 1. The k-stability of a Winnowing-family algorithm with window size

w is approximately 'u’j;,}i

Proof. Assume we randomly and independently pick w g-grams from the collec-
tion to form a window W, and another k ¢-grams to form a set Spe.. We will
then randomly and independently pick k ¢-grams from W and replace them with
g-grams in Sy, We name these k g-grams as S,;q and the rest g-grams as Syes¢.
Apparently, the signature of W will not change after we subsitute k g-grams,
only when the signature sig is in Syes:- In Winnowing-family algorithms, this
indicates that f(sig) is the rightmost samllest value among all the w + k picked
g-grams. The probability of this event can be estimated using Lemma, [T

Pr= Zz: pla;) - (gp(xj) + p(;i))w““_l
Y (ORI i E

There are w — k g-grams in S;.s; and we need to consider each of them. Thus
for the event “signature in W is not changed” will happen with probability

w—Fk 1 w—k -
1 wr+k wtk

Note if we change one character, it will affect at most ¢ g-grams. This obser-
vation straightly leads us to the following corollary.

Corollary 1. Assume a Winnowing-family algorithm with gram length q and
window size w. if we change m characters in a window, the signatures of it will

remain the same, in the worst case, with probability p = max (0, g;zg)
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Table 1. Stability of Winnowing-family algorithms

. m

Setting 1 9 3 4
q =50 Worst Case  33.33% 0% 0% 0%
w = 100 Average 52.25% 25.70% 12.51% 6.11%
q=14 Worst Case  94.67% 89.61% 84.81% 80.25%
w = 146 Average 94.77% 89.82% 85.12% 80.67%

Remark 1. By letting m = 0, the Winnowing-family algorithms have 0-stability
of 100%, which agrees with the locality property. So in this sense, we can deem
k-stability as an extension of the locality property.

Stability Analysis for the Original Winnowing Algorithm. Table [l shows the
probabilities of the signature in a window remaining the same after changing m
characters, in worst case (i.e., in Corollary [I) as well as on average. With the
typical setting of Winnowing from [I7], where ¢ = 50 and w = 100, changing
even few characters will bring a significant decreasing to its stability, as well as
the robustness of a near duplicate text detection method based on Winnowing.

However, from Corollary [Il as as showing in Table [Tl we know that with the
same locality of (w + ¢ — 1), a smaller ¢ is much more preferable (e.g., ¢ = 4)
with respect to stability. Unfortunately, Winnowing cannot benefit from such
q’s. When ¢ is smaller, the average occurence of g-grams is higher due to the re-
duction of distinct g-grams in the corpus. Then a random hash function f(z) will
have more chance to select a frequently-occurring g-gram as signature, which will
affect the number of candidates as well as the query time for a Winnowing based
method. This motives us to propose following Winnowing-family algorithm to
fight against these problems.

4.3 Collection Frequency Biased Winnowing

We propose Frequency Biased Winnowing, which achieves a better stability by
using small ¢’s, yet it stilll achieves good efficiency for query processing.

Collection frequency, defined as the number of times that a term appears in
the collection, is a statistical measurement to evaluate the importance of a term
(or g-gram) in a collection. This leads us to use frequency of g-grams when
selecting signatures. Rare ¢g-grams are more preferable because they are more
representative and able to make the length of posting lists shorter.

Our proposed signature selection algorithm, frequency biased Winnow-
ing, is a Winnowing-family algorithm which takes collection frequency for each
g-gram as their hash values. Since the frequency of two different ¢g-grams might
be the same, the alphabet order of the g-grams will be used to break such tie.

Ezample 2. Consider the same setting and document as in Example [, where q
= 3 and w = 4, qg-grams of the document are: {abc, bcd, cde, ded, edc, dcb, cba}.
Assume their corresponding collection frequencies are {18,62,50,43,30,79,30}.
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Then underlined numbers (also in bold face) can be selected from 4 windows:
(18, 62, 50, 43), (62, 50, 43, 30), (50, 43, 30, 79), and (43, 30, 79, 30). In the
last window, the last 30 is selected because of the alphabet order of cba and edc.

Obviously our proposed frequency biased Winnowing is a Winnowing-family
algorithm, therefore it holds the locality property. And its k-stability is ﬁ;g .
Comparison with Winnowing. Frequency biased Winnowing prefers small ¢. Be-
cause when ¢ becomes larger (e.g., ¢ > 10), the number of possible distinct
g-grams tends to be extremly large (i.e., |X|?, where X is the alphabet), and
most of them will have the frequency of 0 or 1. Then the algorithm selects
signatures almost only based on their alphabet orders and has no benifit from
collection frequencies. According to the experiments, ¢ between 3 and 5 is the
best setting for our method.

According to Corollary[ll a smaller g is more preferable for Winnowing-family
algorithms with respect to its stability. On the other hand, since we always choose
the g-gram with smallest collection frequency in the window, the posting list in
our algorithm will not be very long. Therefore, our method will improve the
effectiveness compared with Winnowing with large ¢’s and also improve the effi-
ciency compared with Winnowing with small ¢’s. Our experiments have verified
our analysis.

5 Generate Candidate Texts

In this section, we introduce the methodology of generating candidate texts in
our near duplicate text detection method (i.e., the GenCandTexts function, Line
8 of Algorithm [I]).

For each candidate document, we now have a sorted list that contains positions
of matching signatures in the document. We do not use order among matching
signatures, as it is quite common to have near duplicate text with reordered sub-
parts. Instead, candidate texts are generated by applying the following heuristic
rules of merge signatures and determine boundaries.

— Merge Signatures. We first combine continuous signatures together. Two
signatures are continuous if they may be derived from two overlapping or
adjacent windows. We can either store the window positions where the sig-
nature are generated. Otherwise, given the positions of two signatures s;
and s; (assuming poss, < poss;), they are considered to be continuous if
poss; — poss; < 2w+ q — 2, as this is the worst case where the two signatures
are the first and last signature in two adjacent windows, respectively.

— Determine Boundaries. Given an ordered merged list of sigantures {s1, s2,
...y Sm} of document d, we generate the candidate text that has the longest
possible length: we take the substring between positions possiqrt and posend,
where posstar+ = max(1l, poss, — w + 1) and posenqa = min(poss,, + w + q —
1,len(d)).
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6 Heap Based Optimization

Lines 9-11 of Algorithm [Il compute the similarity for every candidate text and
returns the largest one. This is not efficient if there is a large number of can-
didate texts which are long, or not similar to @. In this section, we propose a
heap-based optimization to reduce the number of similarity computations.

We observe that an upper bound of the similarity between two strings can
be easily computed based on their lengths. In Equation (), |[gramsg| is fixed
for a given query, thus the similarity between ¢ and @ is only affected by
|grams. N gramsg|. Since |grams. N gramsg| < min (|grams.|, |gramsg|), we
can easily work out an upperbound of sim(c, Q) as follows:

min (|grams.|, |gramsq|) |grams.|

sim(c, Q) < simyp(c, Q) = \gramsol = min (

)

lgramsg|’

In addition, simqp(c, @) increases monotonically with |grams.| = len(c) — ¢+ 1.
The optimized query algorithm is shown in Algorithm 2] which should replace
Lines 7-11 of Algorithm [l The major modifications are:

— We use a max-heap H to organize candidate texts, based on their upper bound
similarity ub score.

— We maintain the current maximum score in max score, and we terminate the
loop only when the head of the heap H’s upper bound score is no more than
max score.

— We use a similarity computation function CalcSim2 which can stop earlier
during the similarity computation (See Algorithm [). Note that we convert a
multiset of g-grams to a set of g-grams by annotating a g-gram g as g; if it is
the i-th occurrence of g-gram. We perform the same transformation for @ and
index it so that the set membership query (Line 4) can be performed efficiently.

Our experiments show that this optimization can save up to 99% number of
similarity computations.

Algorithm 2. OptimizedQuery

/* generate candidate texts for each candidate document */
for each d; € G do
for each candidate text c; € GenCandTexts(G[d;]) do
ub score < SimUB(¢;);
H.enqueue(c;, ub score);

W N

/* find the best candidate text */
mazx stm < 0;
while H.head.ub score > max sim do

¢ < H.dequeue();

mazx sim < max(max sim, CalcSim2(Q, ¢, maz sim);

© 00N o wm

return c;
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Algorithm 3. CalcSim2(Q, ¢, maz sim)

1 max err < |grams.| - (1 — maz sim);
2 err + 0;

3 for each ¢-gram g € grams. do

4 if g ¢ Q then

5 err < err + 1;

6 if err > max err then

7 return 0;

o0

return (|grams. — err|)/|gramsq|;

7 Experimental Results

In this section, we report our experiment results with two different implemen-
tations of our near duplicate text detection method, based on Winnowing [17]
and frequency biased Winnowing respectively. We compare the performance of
our proposed algorithm against Winnowing. We also show the improvments of
heap based optimization introduced in Section

7.1 Experiments Setup

Our near duplicate text detection system is implemented in Java and compiled
using JDK 1.6.0. We use the Lucene library (Version 3.3.0 to help build and
retrieve the indexes. All experiments are carried out on a PC with a Quad-Core
AMD Opteron 8378@2.4GHz Processor and 96GB RAM, and running Ubuntu
4.4.3.

Dataset. We use PAN-PC-ldg, a publicly available real dataset, to test our
method. The PAN-PC-10 dataset is published and used in Plagiarism De-
tection Task of PAN Workshop and Competition of Year 2010, which contains
11,148 source documents and 68, 558 plagiarism cases. For each plagiarism case,
the corresponding source sections are provided in the annotation of the dataset.

We remove those non-English documents from dataset, as our method is not
designed for cross-lingual plagiarism. For both source documents and plagiarism
cases, we converte all the non alphanumeric characters to '’ and all the up-
percase characters to lowercase. Thus we finally have 10,482 documents with
average length of 149,354 in the dataset. The total size of the dataset is 1.57
GB and the alphabet size is 37 (i.e., [a-z0-9 ]).

Parameter Setting. We implemented our method on both Winnowing and fre-
quency biased Winnowing under variant settings of ¢ and w. We keep ¢+w = 150,
such that the same locality guarantee will hold.

!http://lucene.apache.org/
2 http://www.webis.de/research/events/pan-10
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As suggested in [I7], We set ¢ = 50 and w = 100 for Winnowing. We also try
other possible ¢’s from 3 to 60 and Winnowing achieves its best performance con-
sidering both efficiency and effectiveness on PAN-PC-10 dataset when ¢ = 10
and w = 140. Therefore, we report the experiment results for Winnowing on
these two settings.

For frequency biased Winnowing, we also try different ¢’s from 3 to 5, and
results for ¢ equals to 4 and 5 are reported.

Queries and Measurements. There are two main different types of near-
duplications in the PAN-PC-10 dataset [16], which are artificial (automatic)
plagiarism cases and simulated (manual) plagiarism cases. In artificial plagiarism
cases, there are three different obfuscation levels (i.e., none, low and high). For
each of the four types above, we randomly select 100 plagiarism cases as queries
and use the facts in the annotation as the ground truth for evaluation.

We focus on the following 5 measurements (all measurements are averaged
over all queries):

— Index Size, which is the space needed to store the index.

— Index Time, which is the total time needed to index the whole collection.

— Accuracy. We use recall, precision and Fj score to measure the accuracy of
our method. Given query @, its recall and precision are defined as |£2| / |S| and
|2| / | Q] respectively. Where {2 represents the detected plagiarized paragraph,
and S indicates the real plagiarized paragraph.

— Query Time, which is the total time to process a query.

— Calculated Candidate Texts, which is the number of candidate texts whose
similarity to @ is calculated. We report the number before and after applying
optimization. We also report the total length of calculated candidate texts,
as they are approxmately proportional to the query time, and the query time
before applying optimization is extremly long thus we do not report it.

7.2 Indexing Time and Size

We plot the index size and indexing time for both algorithms with different pa-
rameters in Figure The spots and line show indexing time. It is clearly
that Winnowing takes much more time on indexing than frequency biased Win-
nowing. This is mainly due to the following two reasons. Firstly, the number of
distinct signatures in Winnowing is much more than those in frequency biased
Winnowing, (E.g., 30,982,703 vs. 486, 248). Secondly, the time cost for calcu-
lating hash values in Winnowing is much longer than looking up the frequency
table in frequency biased Winnowing.

The bars show index size of two different algorithms. Apparently Winnowing
also has a larger index size, especially when ¢ is large. This is because of the
different number of distinct signatures two algorithms, also the length of signa-
tures in Winnowing is longer. It usually takes more space to store a String (e.g.,
signatures) than integers (e.g., positions), thus Winnowing requires more space.
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Fig. 1. Experimental Results

We plot the average recall, precision and Fj score over 400 queries on both
algorithms with different parameters in Figure Clearly, frequency biased
Winnowing has a much better accuracy than Winnowing.

More specifically, frequency biased Winnowing with ¢ = 4 achieves F} score
of 0.775 while Winnowing achieves 0.496 with ¢ = 50 and 0.745 with ¢ = 10.
Considering that both algorithms achieve similar precisions, this gap is mainly
due to the low recall of Winnowing algorithm. As we stated in Section 2] the
stability affects recall for Winnowing-family algorithm. Winnowing with larger
q has lower stability thus lower recall than frequency biased Winnowing (i.e.,

44.00% — 70.66% vs. 76.56% — 77.15%).

We also plot Fj score for both algorithms on different types of queries in
Figure Both algorithms perform well on none obfuscated plagiarism cases.
Winnowing starts to fail on low obfuscated artificial plagiarism cases, especially
with ¢ = 50. And frequency biased Winnowing completely beats Winnowing
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on hard queries (i.e., high obfuscated artificial and simulated plagiarism cases).
This is also due to Winnowing’s low recall, especially for hard queries, where the
loss of stability will bring non-negligible impact on its accuracy.

It is worth mentioning the results of PAN-10 competition. The first place
achieves average recall of 69.17% and F} score of 0.797, while the second place
achieves 62.99% and 0.709. Although our current method cannot support cross-
lingual plagiarism cases, and our queries are generated based on the ground
truth, it is still justified to say that our near duplicate text detection method is
competitive against the top works in the area.

7.4 Query Time

We plot the average query time for both algorithms with different ¢’s in Fig-
ure [L(b)l We observe that the query time of frequency biased Winnowing is
smaller than Winnowing with ¢ = 10, but much larger than Winnowing with ¢ =
50. Winnowing generates very few or even no candidate for hard queries when
g = 50. But when ¢ = 10, it generates more candidates than frequency biased
Winnowing, which leads to more similarity computations thus more time cost.

7.5 Calculated Candidate Texts

In order to verify our analysis of query time as well as show the improvement
of heap based optimization, we plot the number of calculated candidate texts
and the total length of them, before and after using heap based optimization, in
Figure and Figure respectively. Our optimization brings significant im-
provements. Up to 99% of candidate texts are skipped, so does the total length
of them. Our optimization also saves approximately 99% of query time, as most
time is spent on similarity computations. This is due to that most queries have a
high similarity answer, once we find it, we can almost ignore the rest candidates.

8 Related Work

Winnowing is considered very important in various areas and used in a number of
works. For example, [22] uses it to partition the files and further detect the redun-
dancy in the file. [I0] uses it to generate variable sized blocks in order to perform
accelerating multi-pattern matching. It also used to quickly find the possible pla-
giarism parts [5], but only “copy and paste” plagiarism cases are explored. [I1]
uses it to shorten the size of input data on its secure file scanning system on
enterprise networks. However, seems no one focuses on improving Winnowing,.
There are many works focusing on near duplicate text detection by using dif-
ferent signature selecting methods. [3] selects every I-th g-grams, which is sus-
ceptible to positional changes such as insertion or deletion. The (mod p) = 0
scheme [13] selects ¢-grams whose hash values can be divided by p, but it is pos-
sible to select nothing from a document. Very similar to Winnowing, [2] selects
the g-gram whose hash value is smaller than its previous and next h g-grams. It
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holds a weaker locality which only guarantees to return same or no signature for
identical substrings. Spotsigs [19] takes a chain of words that follows a stopword
as signatures to find near duplicate Web documents. [I] takes the idea of Spot-
sigs but also considers the standard tf-idf weighting. It uses sampling to detect
duplicate news stories and achieves a good performance. All metioned methods,
including other methods like [QII5/IRI21], either offer no locality guarantees or
suffer from large number of false positives.

There are previous works exploiting collection statistics (mainly inverse doc-
ument frequency). [8] uses words with the first 30 to 60 highest idf, [7] selects
terms with high idf, and its extention [I2] uses external collection statistics.

Another category of approaches to detect near duplicate document is to find
documents that are highly similar to the query document as a whole. Represen-
tative approaches include those emplying Jaccard similarities based on tokens or
word n-grams, and those employing Hamming distance based on a binary feature
vectors constructed from the documents. There are efficient exact computation
algorithms [20J14)24] as well as approximate algorithms based on locality sensi-
tive hashing [4U16].

9 Conclusion

In this paper, we propose a new near duplicate text detection framework us-
ing signatures selected by Winnowing-family algorithms. We raise a new con-
cept named k-stability with theoretical analysis to measure the stability of
Winnowing-family algorithms when small errors happening, and propose a new
frequency biased Winnowing algorithm.We also propose candidate text genera-
tion methods and optimization to improve the performance of our framework.
Our experimental result shows the significant improvement of our proposed al-
gorithm and the good performance on a plagarism detection benchmark.
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