
Similarity Query Processing for High-Dimensional Data

Jianbin Qin
Shenzhen Institute of Computing Sciences,

Shenzhen University

jqin@sics.ac.cn

Wei Wang
University of New South Wales

weiw@cse.unsw.edu.au

Chuan Xiao
Osaka University and Nagoya University

chuanx@ist.osaka-u.ac.jp

Ying Zhang
University of Technology Sydney

Ying.Zhang@uts.edu.au

ABSTRACT
Similarity query processing has been an active research topic for
several decades. It is an essential procedure in a wide range of
applications. Recently, embedding and auto-encoding methods
as well as pre-trained models have gained popularity. They
basically deal with high-dimensional data, and this trend brings
new opportunities and challenges to similarity query process-
ing for high-dimensional data. Meanwhile, new techniques
have emerged to tackle this long-standing problem theoreti-
cally and empirically. In this tutorial, we summarize existing
solutions, especially recent advancements from both database
(DB) and machine learning (ML) communities, and analyze
their strengths and weaknesses. We review exact and approx-
imate methods such as cover tree, locality sensitive hashing,
product quantization, and proximity graphs. We also discuss
the selectivity estimation problem and show how researchers
are bringing in state-of-the-art ML techniques to address the
problem. By highlighting the strong connections between DB
and ML, we hope that this tutorial provides an impetus towards
new ML for DB solutions and vice versa.

PVLDB Reference Format:
Jianbin Qin, Wei Wang, Chuan Xiao, and Ying Zhang. Similarity
Query Processing for High-Dimensional Data. PVLDB, 13(12):
3437-3440, 2020.
DOI: https://doi.org/10.14778/3415478.3415564

1. INTRODUCTION
Similarity query processing is a fundamental and essential

procedure in applications of many domains, including databases
(DB), machine learning (ML), multimedia, and computer vision.
Numerous query processing algorithms have been proposed in
the last few decades to deal with various kinds of data types and
similarity functions. With the proliferation of deep learning,
especially the prevalence of embedding, auto-encoders, and pre-
trained models, similarity query processing for high-dimensional
data become increasingly important. They benefit DB applica-
tions such as entity matching [48] and concept linking [12] as

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415564

well as ML applications such as multimedia retrieval [7] and
adversarial machine learning [1]. In ML community, similarity
queries are also studied under the name of k nearest neighbors
(k-NN) queries. k-NN itself is also an instance-based learning
method for classification and regression.

Our tutorial discusses the importance of similarity query
processing for high-dimensional data in a wide range of appli-
cations. We summarize existing solutions, especially recent
advancements from both DB and ML communities, thereby
highlighting the interplay between modern DB and ML tech-
nologies. We review technical challenges and various exact and
approximate algorithms, including cover tree, locality sensitive
hashing, product quantization, and proximity graphs. More-
over, we discuss the selectivity estimation of similarity query
processing for high-dimensional data, and show how researchers
are bringing in state-of-the-art ML techniques to address this
problem. We expect that this tutorial will provide an impetus
towards new ML for DB solutions and vice versa.
Scope. This tutorial aims to provide a comprehensive review of
similarity query processing methods for high-dimensional data.
In particular, we explain the reason why processing similarity
queries for high-dimensional data – in contrast to sets and strings
(see [45, 73] for survey) which have been extensively studied by
the DB community – has become more important. We introduce
various existing algorithms and analyze their strengths and
weaknesses. We highlight the connections between DB and ML
as well as their foci on this topic. Finally, we outline future
research directions and open problems to be solved.
Intended Length and Target Audience. This is a three-
hour tutorial targeting researchers, developers, and practition-
ers interested in managing high-dimensional data and ML for
DB topics. We assume that the target audience is generally fa-
miliar with basic DB and ML terms, but there is no requirement
for prior knowledge of specific algorithms.
Related Tutorials in Recent Years. This will be the
first time that the authors present a tutorial on similarity
query processing for high-dimensional data. To the best of
our knowledge, two topically related tutorials were presented
at recent data-centric research venues (WISE 2017 [55] and
CIKM 2019 [40]). These two tutorials target sets and strings,
respectively, whose query processing methods are substantially
different from those will be presented at this tutorial.

2. TUTORIAL OUTLINE
This tutorial consists of five parts. The first part motivates

the need for similarity query processing on high-dimensional
data and introduces basic concepts. The second and third

3437



parts delve into query processing algorithms. The fourth part
covers selectivity estimation algorithms. The fifth part discusses
miscellaneous issues such as the use of similarity queries with
respect to the entire workflow of real applications, deployment
in a distributed environment, as well as future directions and
open problems.

2.1 Background and Preliminaries
In the introductory part of the tutorial, we first introduce

applications and explains the increasing importance of simi-
larity query processing on high-dimensional data, as stated in
Section 1. Then we describe basic concepts: (1) data models
and the way of which we convert raw data (text, images, etc.)
to high-dimensional data; (2) similarity/distance functions,
mainly Hamming distance for binary vectors, Euclidean dis-
tance, cosine similarity (angular distance), and inner product
for real-valued vectors; (3) query types, i.e., search and join
queries, or thresholded and k-NN queries, depending on the
dimension of categorization; (4) a summary of the solutions
that will be elaborated in the rest of the tutorial.

2.2 Exact Query Processing
Exact query processing methods aim to find all the results

that satisfy the similarity constraint. Researchers are interested
in this type of solutions as it does not pose any uncertainty
to the pipelines that apply similarity query processing as a
component. It also simplifies empirical comparison as only speed
and space consumptions are key evaluation criteria. Existing
exact methods usually answer queries by looking up one or
more (overlapping or non-overlapping) regions in the original
or a transformed space. Partitioning techniques are often
employed. These methods can be classified into the following
three categories:
Tree-basedMethods. These methods partition the database
in a hierarchical manner. To process queries, triangle inequality
is often used to determine the nodes to be traversed. Represen-
tative methods are M-tree [11] and cover tree [5, 27].
Space Partitioning Methods. These methods partition
the original space and bound the overall distance using the
distance in each subspace. Some methods require a sequential
scan of the database, e.g., the vector approximation file (VA-
file) [67]. For fast retrieval, indexing methods were proposed to
deal with Hamming distance using the pigeonhole principle [51,
54, 56, 57].
Dimensionality Reduction Methods. These methods
project objects to another space to reduce dimensionality. They
are basically early attempts that deal with the disk-resident
case and aim at reducing disk I/O [3, 52, 9, 74, 28]. Most of
them transform the original space to a 1-dimensional space and
utilize B+-trees for indexing.

2.3 Approximate Query Processing
It is commonly believed that it is hard to compute the exact

results of queries with a sub-linear cost. Instead, computing
approximate results is sufficiently useful for many practical
problems, and these solutions empirically achieve significantly
higher efficiency and scalability than exact ones [37]. Approxi-
mate methods either adopt a space-first (i.e., looking up regions
in a space) or an object-first (i.e., looking up objects directly)
strategy to find query results.
Locality SensitiveHashing. Locality sensitive hashing (LSH)
is a data-independent space-first approach with probabilistic
guarantees on the worst-case performance [26, 20, 15, 62]. It

relies on a family of hash functions that maps objects to another
space such that similar objects are mapped to the same hash
codes with higher probability than dissimilar objects. Recent de-
velopment focuses on supporting various similarity measures [46,
76] and space-efficient indexing [61, 25, 75].
Learning to Hash. Learning to hash (L2H) is a data-
dependent space-first approach that maps data to another
space by exploiting the data distribution. The main principle
of most methods in this category is to preserve the similarity
information within an appropriate neighborhood. Additional
heuristics and optimizations are often added to further reduce
the information loss caused by the mapping or increase general-
ization to unseen data. According to the optimization objective
to preserve similarity, L2H algorithms can be grouped into
pairwise-similarity persevering class [68, 22, 39], multiwise-
similarity persevering class [64, 63], and implicitly-similarity
persevering class [30, 31]. Recently, deep learning-based L2H
methods were proposed, in both supervised and unsupervised
manner [6, 41, 70, 59].
Space Partitioning Methods. This category is a space-first
approach that divides the high-dimensional space into multiple
regions. Partition is often carried out in a recursive way, so
the index is represented by a tree or a forest. Based on the
way of partitioning, there are mainly three classes of methods:
Pivoting methods divide the objects based on the distance
from the object to some (usually randomly chosen) pivots;
e.g., VP-Tree [71] and ball tree [8]. Hyperplane partitioning
methods recursively divide the space by a hyperplane with a
random direction (e.g. Annoy [4], random projection tree [14])
or an axis-aligned separating hyperplane (e.g., randomized
kd-trees [60, 49]). Compact partitioning methods either divide
the objects into clusters [18] or create possibly approximate
Voronoi partitions [50, 5] to exploit locality. Another line of
methods is based on product quantization [29, 19, 32, 24], with
the unique ability to handle billions of objects.
Neighborhood-basedMethods. This category is an object-
first approach that constructs a proximity graph where nodes
represent objects and edges connect nearby objects. The main
idea is to perform a search for similar objects atop the prox-
imity graph. They achieve top accuracy and speed trade-off
in many empirical evaluations [37, 2]. The first class of these
methods tries to build a k-NN graph [16] or its variant [37]
which records the k-NN of each object. Then nearest neighbor
search is conducted by the hill-climbing strategy. The second
class employs the navigable small world graph [43, 44], an undi-
rected graph that contains an approximation of the Delaunay
graph and has long-range links with the small world navigation
property [34]. Hierarchical navigable small world [44] is one of
the most efficient algorithms thus far and support incremental
update. Recently, learning-based methods were proposed to
provide a more efficient search path in the graph [53]. The third
class is based on the relative neighborhood graph [17], which
considers connectivity, degree, shortest path length, and index
size to achieve robust empirical performance.

2.4 Selectivity Estimation
Selectivity estimation outputs the approximate number of

objects that satisfy a selection criterion. Due to its use in
density estimation, outlier detection, image retrieval, and query
optimization, this problem has received considerable attention
recently. For example, hands-off entity matching systems [21,
13] extract paths from random forests and take each path (a
conjunction of similarity predicates over multiple attributes)

3438



as a blocking rule, and thus selectivity estimation is useful for
choosing the execution order of query plans that involve multiple
similarity predicates. A traditional database method is based
on importance sampling [69]. Kernel density estimation [23, 47]
tailored to this problem has also been developed. A recent trend
is to formalize it as a regression task and utilize ML methods,
e.g., by XGBoost [10], LightGBM [33], the mixture of expert
model [58], or the recursive model indexes [35]. Another line of
work targets monotonic estimation by employing deep lattice
network [72], deep regression with incremental prediction [65],
or piece-wise linear functions [66].

2.5 Future Opportunities
We highlight a number of promising directions for future

research: (1) It is interesting to explore ML models as solu-
tions to query processing (e.g., learned indexing or sampling).
(2) Whilst many existing studies target search queries, we ex-
pect that join queries will be explored, especially for the cold
start case. (3) Answering composite queries (e.g., conjunctive
queries) over multiple attributes will receive more attention,
since many DB tasks deal with multi-attribute data and the
advancement of deep learning methods will enable us to embed
more attributes for semantic comparison. (4) Another direction
is to develop efficient algorithms for query processing in data
science platforms such as Pandas/R dataframe.

3. BIOGRAPHIES OF PRESENTERS
The four presenters have rich experience in the research on

similarity queries for high-dimensional data, and have made
significant contributions [36, 37, 38, 54, 56, 57, 61, 42, 65, 66].

Jianbin Qin is a Research Scientist with Shenzhen Institute
of Computing Sciences, Shenzhen University. He received the
Ph.D. degree from the University of New South Wales in 2013.
His research interests include similarity query processing, data
integration, textual databases, and information retrieval. He
has given a tutorial at WISE 2017.

Wei Wang is a Professor with the University of New South
Wales. He received the Ph.D. degree from the Hong Kong
University of Science and Technology in 2004. His research
interests include high-dimensional data management, similarity
query processing, data integration, knowledge graphs, natural
language processing, and adversarial machine learning. He has
given tutorials at SIGMOD 2009 and ICDE 2011.

ChuanXiao is an Associate Professor with Osaka University
and Nagoya University. He received the Ph.D. degree from the
University of New South Wales in 2010. His research interests
include similarity query processing, data integration, textual
databases, spatio-temporal databases, and graph databases.
He has given a tutorial at WISE 2017.

Ying Zhang is a Professor and ARC Future Fellow with
the University of Technology, Sydney, and the Head of the
Database Group at the Centre for Artificial Intelligence. He
received the Ph.D. degree from the University of New South
Wales in 2008. His research interests include high-dimensional
data management, scalable data analytics, data streams, and
graph databases. He has given a tutorial at ICDE 2019.
Acknowledgments. This work was supported by JSPS
17H06099, 18H04093, and 19K11979, NSFC 61702409, Guang-
dong Basic and Applied Basic Research Foundation 2019A1515111047,
2019A1515011064, Guangdong Project 2017B030314073 and
2018B030325002, ARC DP170103710, DP180103096, DP180103411,
and FT170100128, and D2D CRC DC25002 and DC25003. We
thank Yaoshu Wang (SICS) for his kind advice.

4. REFERENCES
[1] M. Alzantot, Y. Sharma, A. Elgohary, B. Ho, M. B. Srivastava,

and K. Chang. Generating natural language adversarial
examples. In EMNLP, pages 2890–2896, 2018.

[2] M. Aumüller, E. Bernhardsson, and A. J. Faithfull.
Ann-benchmarks: A benchmarking tool for approximate
nearest neighbor algorithms. Inf. Syst., 87, 2020.

[3] S. Berchtold, C. Böhm, and H. Kriegel. The pyramid-technique:
Towards breaking the curse of dimensionality. In SIGMOD,
pages 142–153, 1998.

[4] E. Bernhardsson. Annoy at github
https://github.com/spotify/annoy, 2015.

[5] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for
nearest neighbor. In ICML, pages 97–104, 2006.

[6] D. Cai, X. Gu, and C. Wang. A revisit on deep hashings for
large-scale content based image retrieval. CoRR,
abs/1711.06016, 2017.

[7] Y. Cao, M. Long, B. Liu, and J. Wang. Deep cauchy hashing for
hamming space retrieval. In CVPR, pages 1229–1237, 2018.

[8] L. Cayton. Fast nearest neighbor retrieval for bregman
divergences. In ICML, pages 112–119, 2008.

[9] K. Chakrabarti and S. Mehrotra. Local dimensionality
reduction: A new approach to indexing high dimensional spaces.
In VLDB, pages 89–100, 2000.

[10] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting
system. In KDD, pages 785–794, 2016.

[11] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In VLDB,
pages 426–435, 1997.

[12] J. Dai, M. Zhang, G. Chen, J. Fan, K. Y. Ngiam, and B. C. Ooi.
Fine-grained concept linking using neural networks in
healthcare. In SIGMOD, pages 51–66, 2018.

[13] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan,
R. Deep, E. Arcaute, V. Raghavendra, and Y. Park. Falcon:
Scaling up hands-off crowdsourced entity matching to build
cloud services. In SIGMOD, pages 1431–1446, 2017.

[14] S. Dasgupta and Y. Freund. Random projection trees and low
dimensional manifolds. In STOC, pages 537–546, 2008.

[15] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, pages 253–262, 2004.

[16] W. Dong. High-dimensional similarity search for large datasets.
Princeton University, 2011.

[17] C. Fu, C. Xiang, C. Wang, and D. Cai. Fast approximate
nearest neighbor search with the navigating spreading-out
graph. PVLDB, 12(5):461–474, 2019.

[18] K. Fukunaga and P. M. Narendra. A branch and bound
algorithms for computing k-nearest neighbors. IEEE Trans.
Computers, 24(7):750–753, 1975.

[19] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product
quantization. IEEE Trans. Pattern Anal. Mach. Intell.,
36(4):744–755, 2014.

[20] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, pages 518–529, 1999.

[21] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,
J. W. Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing
for entity matching. In SIGMOD, pages 601–612, 2014.

[22] J. He, W. Liu, and S. Chang. Scalable similarity search with
optimized kernel hashing. In KDD, pages 1129–1138, 2010.

[23] M. Heimel, M. Kiefer, and V. Markl. Self-tuning,
GPU-accelerated kernel density models for multidimensional
selectivity estimation. In SIGMOD, pages 1477–1492, 2015.

[24] J. Heo, Z. Lin, X. Shen, J. Brandt, and S. Yoon. Shortlist
selection with residual-aware distance estimator for k-nearest
neighbor search. In CVPR, pages 2009–2017, 2016.

[25] Q. Huang, J. Feng, Q. Fang, W. Ng, and W. Wang.
Query-aware locality-sensitive hashing scheme for lp norm.
VLDB J., 26(5):683–708, 2017.

[26] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC, pages
604–613, 1998.

3439



[27] M. Izbicki and C. R. Shelton. Faster cover trees. In ICML,
pages 1162–1170, 2015.

[28] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.

idistance: An adaptive b+-tree based indexing method for
nearest neighbor search. ACM Trans. Database Syst.,
30(2):364–397, 2005.

[29] H. Jégou, M. Douze, and C. Schmid. Product quantization for
nearest neighbor search. IEEE Trans. Pattern Anal. Mach.
Intell., 33(1):117–128, 2011.

[30] Z. Jin, Y. Hu, Y. Lin, D. Zhang, S. Lin, D. Cai, and X. Li.
Complementary projection hashing. In ICCV, pages 257–264,
2013.

[31] A. Joly and O. Buisson. Random maximum margin hashing. In
CVPR, pages 873–880, 2011.

[32] Y. Kalantidis and Y. Avrithis. Locally optimized product
quantization for approximate nearest neighbor search. In
CVPR, pages 2329–2336, 2014.

[33] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
and T. Liu. Lightgbm: A highly efficient gradient boosting
decision tree. In NIPS, pages 3149–3157, 2017.

[34] J. M. Kleinberg. Navigation in a small world. Nature,
406(6798):845, 2000.

[35] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The
case for learned index structures. In SIGMOD, pages 489–504,
2018.

[36] M. Li, Y. Zhang, Y. Sun, W. Wang, I. W. Tsang, and X. Lin.
I/O efficient approximate nearest neighbour search based on
learned functions. In ICDE, 2020.

[37] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and
X. Lin. Approximate nearest neighbor search on high
dimensional data-experiments, analyses, and improvement.
IEEE Trans. Knowl. Data Eng., 2019.

[38] W. Liu, H. Wang, Y. Zhang, W. Wang, and L. Qin. I-LSH: I/O
efficient c-approximate nearest neighbor search in
high-dimensional space. In ICDE, pages 1670–1673, 2019.

[39] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with
graphs. In ICML, pages 1–8, 2011.

[40] J. Lu, C. Lin, J. Wang, and C. Li. Synergy of database
techniques and machine learning models for string similarity
search and join. In CIKM, pages 2975–2976, 2019.

[41] J. Lu, V. E. Liong, and J. Zhou. Deep hashing for scalable image
search. IEEE Trans. Image Processing, 26(5):2352–2367, 2017.

[42] K. Lu, H. Wang, W. Wang, and M. Kudo. VHP: approximate
nearest neighbor search via virtual hypersphere partitioning.
PVLDB, 13(9):1443–1455, 2020.

[43] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov.
Approximate nearest neighbor algorithm based on navigable
small world graphs. Inf. Syst., 45:61–68, 2014.

[44] Y. A. Malkov and D. A. Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. CoRR, abs/1603.09320, 2016.

[45] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation
of set similarity join techniques. PVLDB, 9(9):636–647, 2016.

[46] G. Marçais, D. F. DeBlasio, P. Pandey, and C. Kingsford.
Locality-sensitive hashing for the edit distance. Bioinform.,
35(14):i127–i135, 2019.

[47] M. Mattig, T. Fober, C. Beilschmidt, and B. Seeger.
Kernel-based cardinality estimation on metric data. In EDBT,
pages 349–360, 2018.

[48] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,
G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep
learning for entity matching: A design space exploration. In
SIGMOD, pages 19–34, 2018.

[49] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms
for high dimensional data. IEEE Trans. Pattern Anal. Mach.
Intell., 36(11):2227–2240, 2014.

[50] G. Navarro. Searching in metric spaces by spatial
approximation. VLDB J., 11(1):28–46, 2002.

[51] M. Norouzi, A. Punjani, and D. J. Fleet. Fast exact search in
hamming space with multi-index hashing. IEEE Trans. Pattern
Anal. Mach. Intell., 36(6):1107–1119, 2014.

[52] B. C. Ooi, K. Tan, C. Yu, and S. Bressan. Indexing the edges -
A simple and yet efficient approach to high-dimensional
indexing. In PODS, pages 166–174, 2000.

[53] L. Prokhorenkova. Graph-based nearest neighbor search: From
practice to theory. CoRR, abs/1907.00845, 2019.

[54] J. Qin, Y. Wang, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa.
GPH: similarity search in hamming space. In ICDE, pages
29–40, 2018.

[55] J. Qin and C. Xiao. Set similarity query processing. In WISE,
2017.

[56] J. Qin and C. Xiao. Pigeonring: A principle for faster
thresholded similarity search. PVLDB, 12(1):28–42, 2018.

[57] J. Qin, C. Xiao, Y. Wang, W. Wang, X. Lin, Y. Ishikawa, and
G. Wang. Generalizing the pigeonhole principle for similarity
search in hamming space. IEEE Trans. Knowl. Data Eng.,
2019.

[58] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E.
Hinton, and J. Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. CoRR, abs/1701.06538,
2017.

[59] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen.
Unsupervised deep hashing with similarity-adaptive and
discrete optimization. IEEE Trans. Pattern Anal. Mach. Intell.,
40(12):3034–3044, 2018.

[60] C. Silpa-Anan and R. I. Hartley. Optimised kd-trees for fast
image descriptor matching. In CVPR, 2008.

[61] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving
c-approximate nearest neighbor queries in high dimensional
euclidean space with a tiny index. PVLDB, 8(1):1–12, 2014.

[62] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency
in high dimensional nearest neighbor search. In SIGMOD,
pages 563–576, 2009.

[63] J. Wang, W. Liu, A. X. Sun, and Y. Jiang. Learning hash codes
with listwise supervision. In ICCV, pages 3032–3039, 2013.

[64] J. Wang, J. Wang, N. Yu, and S. Li. Order preserving hashing
for approximate nearest neighbor search. In MM, pages
133–142, 2013.

[65] Y. Wang, C. Xiao, J. Qin, X. Cao, Y. Sun, W. Wang, and
M. Onizuka. Monotonic cardinality estimation of similarity
selection: A deep learning approach. In SIGMOD, pages
1197–1212, 2020.

[66] Y. Wang, C. Xiao, J. Qin, R. Mao, M. Onizuka, W. Wang, and
R. Zhang. Consistent and flexible selectivity estimation for
high-dimensional data. CoRR, abs/2005.09908, 2020.

[67] R. Weber, H. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in
high-dimensional spaces. In VLDB, pages 194–205, 1998.

[68] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, pages 1753–1760, 2008.

[69] X. Wu, M. Charikar, and V. Natchu. Local density estimation
in high dimensions. In ICML, pages 5293–5301, 2018.

[70] Z. Xia, X. Feng, J. Peng, and A. Hadid. Unsupervised deep
hashing for large-scale visual search. In IPTA, pages 1–5, 2016.

[71] P. N. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In SODA, pages
311–321, 1993.

[72] S. You, D. Ding, K. R. Canini, J. Pfeifer, and M. R. Gupta.
Deep lattice networks and partial monotonic functions. In
NIPS, pages 2981–2989, 2017.

[73] M. Yu, G. Li, D. Deng, and J. Feng. String similarity search and
join: a survey. Frontiers Comput. Sci., 10(3):399–417, 2016.

[74] R. Zhang, B. C. Ooi, and K.-L. Tan. Making the pyramid
technique robust to query types and workloads. In ICDE, pages
313–324, 2004.

[75] B. Zheng, X. Zhao, L. Weng, N. Q. V. Hung, H. Liu, and C. S.
Jensen. PM-LSH: A fast and accurate LSH framework for
high-dimensional approximate NN search. PVLDB,
13(5):643–655, 2020.

[76] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. LSH ensemble:
Internet-scale domain search. PVLDB, 9(12):1185–1196, 2016.

3440


