
Local Similarity Search for Unstructured Text

Pei Wang
Nagoya University, Japan

wang@db.ss.is.nagoya-
u.ac.jp

Chuan Xiao∗
Nagoya University, Japan
chuanx@nagoya-u.jp

Jianbin Qin
UNSW, Australia

jqin@cse.unsw.edu.au

Wei Wang
UNSW, Australia

weiw@cse.unsw.edu.au

Xiaoyang Zhang
UNSW, Australia

xyzhang@cse.unsw.edu.au

Yoshiharu Ishikawa
Nagoya University, Japan

y-ishikawa@nagoya-u.jp

ABSTRACT
With the growing popularity of electronic documents, repli-
cation can occur for many reasons. People may copy text
segments from various sources and make modifications. In
this paper, we study the problem of local similarity search
to find partially replicated text. Unlike existing studies on
similarity search which find entirely duplicated documents,
our target is to identify documents that approximately share a
pair of sliding windows which differ by no more than τ tokens.
Our problem is technically challenging because for sliding
windows the tokens to be indexed are less selective than entire
documents, rendering set similarity join-based algorithms less
efficient. Our proposed method is based on enumerating token
combinations to obtain signatures with high selectivity. In
order to strike a balance between signature and candidate
generation, we partition the token universe and for different
partitions we generate combinations composed of different
numbers of tokens. A cost-aware algorithm is devised to find
a good partitioning of the token universe. We also propose
to leverage the overlap between adjacent windows to share
computation and thus speed up query processing. In addition,
we develop the techniques to support the large thresholds.
Experiments on real datasets demonstrate the efficiency of our
method against alternative solutions.

Keywords
local similarity search; unstructured text; prefix filtering; k-
wise signature

1. INTRODUCTION
One of the main issues accompanying the growing popu-

larity of electronic documents is the existence of replication.
People may borrow or plagiarize text segments from various
sources and make modifications. Due the need in many ap-
plications, e.g., plagiarism detection and near-duplicate Web
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page detection, identifying replications between documents
has attracted remarkable attention from research community,
and many approaches were proposed in the last two decades,
e.g., by similarity search and join [27, 10, 3, 4, 35, 33] or
document fingerprinting [25, 6, 8, 29, 30, 18, 31]. For the body
of work in similarity search and join, documents are regarded
as (multi)sets of tokens or strings, and pairs of documents are
identified if they satisfy a similarity constraint. For document
fingerprinting, documents are usually divided into overlapping
or non-overlapping text segments and then identical or similar
segments are identified. However, in many cases of replication,
only a small part of a document is copied and text laundering
may happen, e.g., by reorganizing sentences, replacing words
with synonyms, changing word order, etc. These replications
are hardly detected by similarity search and join approaches
since these methods measures the similarities of entire doc-
uments, which are relatively low when only a small part is
replicated. Document fingerprinting approaches are also likely
to miss these results because they are either susceptible to
small modifications [25, 6, 8] or do not have any guarantee
when detecting similar segments [30, 29, 18, 31].

Seeing the limitations of the existing work, we propose to
study the local similarity search problem for unstructured text.
Given a collection of data documents and a query document,
our goal is to find the data documents that share with the
query a sliding window of size w but differ by a small number
of tokens which are constrained by a threshold τ . Sliding
windows can effectively capture partial replications. We regard
sliding windows as multisets of tokens and tolerate errors so
that replications can be detected in spite of text laundering.
Unlike the document fingerprinting methods without guarantee
when modifications exist, we investigate exact solutions to the
local similarity search problem.

An immediate solution to the problem is materializing all the
windows in the documents as individual objects and invoking
a set similarity join on two sets of windows, one from the
data documents and the other from the query document.
Many prevalent set similarity join methods are based on prefix
filtering [10, 4, 35, 33] to find candidates that satisfy a necessary
but less strict condition of the similarity constraint and then
verify these candidates. Tokens in each object are sorted by a
global order, and two objects must share a required amount
of tokens in their first few tokens, called prefix, to become
a candidate. To find candidates, an inverted index is built
to map each token to a list of objects that have this token
in their prefixes. Tokens are usually sorted by the order of
increasing document frequency so that prefixes are composed
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of rare and hence selective tokens for fast query processing.
However, for local similarity search, windows are much shorter
than entire documents and thus the tokens in their prefixes
are not so selective. In this case, they either have to use
short prefixes but end up with large number of candidates,
or use long prefixes but spend more in candidate generation
due to the access to long postings lists in the inverted index.
Either will result in poor performance. Another issue is that
it is unknown how to share computation between overlapping
windows by these methods, because prefixes can be different
for adjacent windows though they share most of the tokens.

In this paper, we propose to solve the local similarity search
problem by a novel way of leveraging prefix filtering. Unlike
all the existing prefix filtering-based methods that take single
tokens to index, we propose to index k-wise signatures which
are combinations of k tokens in the prefix. Combining tokens
significantly improves the selectivity and thus enables us to
use long prefixes while accessing short postings lists. Since
enumerating all possible k token combinations in the prefix
results in large combination number and hence time-consuming
signature generation, we divide the token universe into several
partitions according to frequency and use different k’s across
these partitions. The corresponding prefix filtering condition is
developed for k-wise signatures with the partitioning technique.
The query processing cost is analyzed, and based on the
cost model we propose a practical algorithm to find a good
partitioning of the token universe. To take advantage of
overlap between adjacent windows, we study how prefixes and
candidates change for sliding windows, thereby developing
an interval sharing technique to avoid unnecessary prefix
computation and candidate generation as well as verification.
For the case of large thresholds which may cause large number
of combinations, we propose to further divide partitions and
thus the combination number is reduced to be proportional
to τ + 1. Experiment results on publicly available datasets
show that our method has superior performance to alternative
solutions with up to 12x speedup.

We also note that tolerating errors in sliding windows will
increase false positive for the task of detecting partial repli-
cations, whereas we aim at developing an efficient method to
increase the recall. Additional post processing methods can
be applied for the sake of high precision.

Our contributions can be summarized as:

• We study the problem of local similarity search to find
sliding windows with a small amount of differences in un-
structured text. It can capture partial replications with
minor modifications which are hard to be detected by exist-
ing methods.
• We propose a prefix filtering-based method and address the

major technical issue in adapting prefix filtering for local
similarity search. Combinations of tokens are utilized for
fast query processing and the token universe is partitioned
to reduce the combination number. We propose a cost model
based on which a practical partitioning algorithm is devised.
• We exploit the sharing of computation between adjacent

windows to efficiently compute prefixes and candidates and
perform verification for sliding windows.
• We conduct extensive experiments on real datasets. The

proposed method is shown to be faster than alternative
methods by up to an order of magnitude.

The rest of the paper is organized as follows: Section 2
defines the problem and introduces preliminaries. Section 3
presents the k-wise signature method with partitioning. Sec-

tion 4 elaborates the interval sharing technique to share com-
putation for overlapping windows. Cost analysis and token
universe partitioning are covered by Section 5. Section 6
presents the technique to cope with large thresholds. Experi-
mental results and analyses are reported in Section 7. Section 8
reviews related work. Section 9 concludes the paper.

2. PRELIMINARIES

2.1 Problem Definition
A document is defined as a sequence of tokens drawn from

a finite universe U = { t1, . . . , t|U| }. A token can be a word,
a q-gram, etc. In our examples, we tokenize documents with
whitespace as delimiters, but our algorithms are independent of
the tokenization scheme. A window of size w is w consecutive
tokens in a document d. d[i] denotes the i-th token in d.
W (d, i) denotes the window starting with d[i]. We use the
notation x v d to denote that x is a window of d. By neglecting
the order of tokens in the original document, a window is
transformed into a multiset of tokens. The overlap similarity
measures the intersection of tokens in two windows x and y;
i.e., O(x, y) = |x ∩ y|. Note that multiplicities are considered
when computing the overlap similarity. Let mul(t, x) denote
the multiplicity (number of occurrences) of a token in a window
x. The multiplicity of t in x∩ y is the smaller of mul(t, x) and
mul(t, y). E.g., {A,A,A,B } ∩ {A,A,B,B } = {A,A,B }. If
a window is drawn from a data document we call it a data
window, and if it is drawn from a query document we call
it a query window. The problem of local similarity search is
defined as follows.

Problem 1. Given a collection of data documents D, a
query document q, a window size w, and a threshold θ, the
problem of local similarity search is to find all pairs of windows
〈x, y〉, such that x is a data window, y is a query window, and
their intersection is at least θ; i.e., { 〈x, y〉 | x v di, di ∈ D, y v
q,O(x, y) ≥ θ }.

We may also define the threshold with dissimilarity; i.e.,
τ = w − θ, and our goal is to find the pair of windows 〈x, y〉
such that w − O(x, y) ≤ τ . For ease of exposition, we use the
τ threshold instead of θ in the rest of the paper.

Example 1. Consider a data document d and a query docu-
ment q,

d =“the lord of the rings”,

q =“the lord and the kings”.

w = 4, and τ = 1. With the word-to-token mapping table,

Word the lord of rings and kings
Token A B C D E F
Window Freq. 2 2 2 1 0 0

The data document has two windows

W (d, 1) ={A,B,C,A },
W (d, 2) ={B,C,A,D }.

The query document has two windows

W (q, 1) ={A,B,E,A },
W (q, 2) ={B,E,A, F }.

〈W (d, 1),W (q, 1)〉 is returned as the result of local similarity
search because the w −O(x, y) = 4− 3 = 1 ≤ τ .
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2.2 Prefix Filtering
Similarity join [10] is an operation to take two relations

as input and return pairs of objects from each relation that
satisfy a similarity constraint. One may regard each window
as an individual object and convert the local similarity search
to a set similarity join on two relations R and S, which consist
of all the windows from the data and the query documents,
respectively. Since similarity computation for all pairs of
objects is time-consuming, many prevalent set similarity join
algorithms are based on the filter-and-refine scheme to generate
a set of promising candidates that satisfy necessary conditions
for the similarity constraint and then verify them by similarity
computation. Many of them [10, 4, 35, 33] utilize the prefix
filtering principle for fast query processing:

Lemma 1 (Prefix Filtering). Consider two multisets
x and y of size w. Both are sorted in a global order O. Let the
prefix of x be the first (τ + 1) tokens in x. If w −O(x, y) ≤ τ ,
the prefixes of x and y must share at least one token.

For the global order O, prefix filtering-based methods suggest
sorting by increasing order of document frequency. In this
way, prefixes tend to be composed of rare tokens, and thus
the number of objects that share at least a token in prefixes
(called candidates) tends to be small. For local similarity
search, since each window is treated as an object, we sort the
tokens in increasing order of window frequency, i.e., the number
of windows in data documents that contain the token, and
break tie by lexicographical order (after tokenization) and then
increasing order of their positions in the original document.
In this paper, we let O be this order unless otherwise stated.
Consider a window x whose tokens are sorted by O. x[i]
denotes the i-th token in x. x[i . . j] denotes the multiset of
tokens from the i-th token to the j-th token in x. Given two
tokens t1 and t2, t1 < t2 if t1 precedes t2 in O.

In [35, 33], the prefix filtering is extended to k-prefix:

Lemma 2 (Extended Prefix Filtering). Consider two
multisets x and y of size w. Both are sorted in a global order
O. Let the k-prefix of x be the first (τ + k) tokens in x. If
w −O(x, y) ≤ τ , then the k-prefixes of x and y must share at
least k tokens.

The condition of the k-prefix case is stricter than the 1-prefix
case, and hence reduces the candidate number. In addition,
an adaptive approach was proposed in [33] to optimize query
processing performance by selecting an appropriate prefix
length for each object using a cost model.

Example 2. Consider the windows and the window fre-
quency table (note that window frequency only counts occurrences
in data windows) in Example 1. O is E < F < D < A < B < C.
We sort the tokens in each window in this order:

W (d, 1) =[A,A,B,C ],

W (d, 2) =[D,A,B,C ],

W (q, 1) =[E,A,A,B ],

W (q, 2) =[E,F,A,B ].

The underlined tokens are 2-prefixes of these windows. W (d, 1)
and W (q, 1) satisfy the similarity constraint. They share two
tokens (two A’s) in their 2-prefixes.

With the (extended) prefix filtering principle, one can design
a similarity join-based algorithm 1 for local similarity search.
The algorithm consists of two parts: the indexing part and
the query processing part. In the indexing part, for each
window in R, the tokens in the prefix (can be 1-prefix, k-prefix,
or adaptive prefix) are extracted, each token regarded as a
signature. An inverted index is built offline, mapping each
signature s to a list (called postings list) of windows whose
prefixes contain s. In the query processing part, the windows
in S are processed one by one in an index nested loops join
manner, and there are three phases: (1) In the signature
generation phase, signatures are generated in the same way as
in the indexing part. (2) In the candidate generation phase,
the inverted index is probed to find candidate windows, i.e.,
the windows in R that share required amount of tokens with
the query window in their prefixes. (3) In the verification
phase, candidate windows are verified and added to the result
if they meet the similarity condition.

There are two main drawbacks of the similarity join-based
algorithm: (1) Compared with similarity join on entire
documents, windows size is smaller in local similarity search.
Prefixes are likely to contain frequent tokens that are not
selective, and this will result in the following dilemma: We
either use short prefixes but end up with a time-consuming
verification phase due to large number of candidate windows,
or use long prefixes but need to access long postings lists which
poses considerable overhead in the candidate generation phase.
(2) Overlap exists between adjacent windows but they are
processed individually without any share of computation, e.g.,
common tokens in prefixes as well as verification of adjacent
windows. We proposed a new method to address the two issues
in the next two sections.

3. k-wise SIGNATURE SCHEME

3.1 Combination of k Tokens
Unlike the similarity join-based algorithm that regards single

tokens as signatures, e.g., [35, 33], we apply the prefix filtering
in another way. Recall that extended prefix filtering requires
that candidate windows share at least k tokens in their prefixes.
For the k-prefix of each window, we pick the combination of
k tokens in every possible way and generate signatures. An
inverted index is built to map each signature to a list of
windows that contain the signature, i.e., all the k tokens, in
their prefixes. We use the index to find windows that share a
common signature, hence at least k tokens in their prefixes.
Since there are (τ + k) tokens in the k-prefix, the number
of signatures for each window is

(
τ+k
k

)
. We call this type

of signatures k-wise signatures. Compared to single tokens,
k-wise signatures are usually more selective and yield shorter
postings lists in the index, thereby reducing the cost in the
candidate generation phase. When k = 1, k-wise signatures
become single tokens and the method is equivalent to standard
prefix filtering (Lemma 1).

Example 3. Consider the four windows in Example 2. τ =

1Despite solving a search problem, we call it a join-based
algorithm because it converts the search problem to a problem
of joining two relations of windows.
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1, and k = 2. The signatures for these windows are 2:

SW (d,1) ={AA,AB,AB },
SW (d,2) ={DA,DB,AB },
SW (q,1) ={EA,EA,AA },
SW (q,2) ={EF,EA,FA }.

W (d, 1) and W (q, 1) share a common signature AA, and there-
fore share at least two tokens in their prefixes.

We compare the cost in the candidate generation phase. Using
single tokens, the postings list of token A has two entries W (d, 1)
and W (d, 2); E and F are not in the index. To process W (q, 1)
and W (q, 2), 2 + 2 = 4 entries are accessed. Using 2-wise
signatures, the postings list of AA has one entry W (d, 1); EA,
EF , and FA are not in the index. To process W (q, 1) and
W (q, 2), 1 entry is accessed, and the cost is reduced by 3 from
the single token case.

For the choice of k, a larger k decreases candidate generation
cost as well as verification cost because signatures are more
selective, resulting in shorter postings lists and less number
of candidates. On the other hand, it increases signature
generation cost due to more token combinations. According to
our experiment results, setting k to 3 yields the best runtime
performance for most w and τ settings.

3.2 Partition of Token Universe
Although using k-wise signatures reduces cost in the candi-

date generation phase, it increases the cost in the signature
generation phase due to the enumeration of token combina-
tions in prefixes. This renders it unable to scale up when
τ or k increases. To remedy this, we observe that due to
the power law distribution of token frequencies, the rarest
tokens in prefixes are selective enough, and there is no need
to combine them to k-wise signatures. Only the relatively
frequent tokens (they are still uncommon when compared with
the most popular tokens in a window) in prefixes need to
be combined, and considering their frequencies we may use
different k’s for different tokens. This inspires our idea of
partitioning token universe.

Consider a token universe U sorted by O. It is divided into
kmax disjoint partitions (empty partitions are allowed). For
the tokens in the i-th partition, i-wise signatures are used
and combinations are only generated from within. Note that
if a window has less than i tokens in the i-th partition, we
do not generate signatures for these tokens in this window.
Intuitively, the rarest tokens are indexed in single tokens, while
the most frequent tokens are indexed in kmax-wise signatures.
We say a token t’s class (denoted by class(t)) is i if t is in the
i-th partition of U . We call this type of signatures partitioned
k-wise signatures.

For the above partitioned k-wise signatures, we define candi-
date windows as the data windows that share with the query
window at least one common signature generated from their
respective prefixes. The prefix length for partitioned k-wise
signatures needs to be computed, considering the possibility
that a window may contain tokens in different classes. Since
a pair of windows 〈x, y〉 satisfying the similarity constraint
may differ by at most τ tokens, if a token of x is not in y, we
call the token an error in x. Our goal is to find the shortest

2We do not remove duplicate signatures because they are
necessary to the correctness of the interval sharing technique
which will be presented in Section 4.

Algorithm 1: PrefixLength (x, τ)

1 cov = 0, ni ← 0(1 ≤ i ≤ kmax);
2 for l = 1 to w do
3 i← x[l]’s class;
4 ni ← ni + 1;
5 if ni ≥ i then
6 cov ← cov + 1;
7 if cov = τ + 1 then break;

8 return l

lengths lx of x and ly of y such that if there is no common
signature generated from the tokens in x[1 . . lx] and y[1 . . ly],
it will incur at least τ + 1 errors (in both x and y).

We say a signature is affected by an error if the signature
contains the error. Given a multiset of tokens, its coverage is
defined as the minimum amount of errors required to affect
all the signatures enumerated from these tokens.

Lemma 3. Consider ni tokens in class i. The coverage of
these tokens is captured by the following equation

cov(i) =

{
ni − i+ 1 , if ni ≥ i
0 , otherwise.

(1)

Proof. For the case when ni ≥ i, if the number of errors
is less than (ni− i+ 1), there will be at least i common tokens,
hence at least one common signature not affected. For the
other case, since no signature can be generated, no error is
needed.

It can be seen that two signatures generated from different
classes do not have any common tokens. Hence we have the
following lemma.

Lemma 4. Consider a multiset which has ni tokens in each
class i (1 ≤ i ≤ kmax). The coverage of these tokens is∑kmax

i=1 cov(i).

With the above lemma, we can design an algorithm (Algo-
rithm 1) to compute the prefix length of a window x, whose
tokens are already sorted by O. First, the algorithm initializes
as zero the coverage and a counter ni for each class i. Then
it iterates through the tokens in x. For each token x[l] and
its class i, it increments the corresponding counter ni. The
coverage is incremented if ni ≥ i. When the coverage reaches
τ + 1, it returns the current value of l as the prefix length.
Although when ni < i no i-wise signatures are generated
from the ni tokens, these tokens are included in the prefix so
that the prefix is still continuous 3. The algorithm correctly
computes the prefix length, as stated by the following theorem
(proof is provided in Appendix B).

Theorem 1. Let lx denote the prefix length of a window
x, as output by Algorithm 1, and Sx be the set of signatures
generated with the tokens in x[1 . . lx]. If w − O(x, y) ≤ τ ,
Sx ∩ Sy 6= ∅.

Example 4. Consider the window in Figure 1. τ = 3. We
need a total coverage of 4. The number of tokens in the first
three classes are 1, 3, and 1, respectively. Their coverages are
1, 2, and 0, respectively, which sum up to 3. Besides these five
tokens, we need the first four tokens in class 4 to make the total
coverage τ + 1. Therefore the prefix length is 9.
3Including these tokens into the prefix is also necessary to
guarantee the correctness of the interval sharing in Section 4.
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A B C C D E E F G Hx:

class:

cov:

1 2 3 4

1 2 0 1

Figure 1: Example of Prefix Length (prefix tokens
are shaded)

Algorithm 2: PartitionedKWise (R,S, w, τ, kmax)

1 T ← ∅, Ii ← ∅;
2 foreach x ∈ R do
3 S ← GenSignature(x, τ, kmax);
4 foreach s ∈ S do
5 Is ← Is ∪ {x } ; /* insert into index */

6 foreach y ∈ S do
7 A← ∅;
8 S ← GenSignature(y, τ, kmax);
9 foreach s ∈ S do

10 foreach x ∈ Is do
11 A← A ∪ {x } ; /* find a candidate */

12 foreach x ∈ A do
13 if w −O(x, y) ≤ τ then
14 T ← T ∪ { 〈x, y〉 };

15 return T

Supposing checking a token’s class spends O(1) time, the
time complexity of Algorithm 1 is O(l). Moreover, the prefix
length of a window is upper-bounded by the following corollary,
as derived from Lemmas 3 and 4.

Corollary 1. A window’s prefix length does not exceed

τ + 1 + kmax(kmax−1)
2

.

The upper bound is tight, because when there are i− 1 tokens
in class i (1 ≤ i ≤ kmax − 1), the prefix length reaches the
upper bound. Corollary 1 also yields an upper-bound of the
time complexity of Algorithm 1, which is O(τ + k2max).

We call a token t a covering token if the coverage of the
tokens in class(t) is above zero, or a non-covering token
otherwise. The following corollary states that the tokens in
the highest class in the prefix are covering tokens.

Corollary 2. Let h be the highest class in the prefix: h =
max{ i | ni > 0, 1 ≤ i ≤ kmax }. The coverage of the tokens in
class h is above zero.

By replacing single tokens with partitioned k-wise signa-
tures, we devise an algorithm (Algorithm 2) for local similarity
search. Partitioned k-wise signatures are generated for in-
dexing (Line 3) and signature generation (Line 8) by calling
Algorithm 3, which computes the prefix length of a window
and then combines tokens in each class i as i-wise signatures.
In candidate generation, for each signature generated from a
query window’s prefix, we probe the inverted index and store
the candidate windows in a set (Line 11). Then the candidate
windows are verified by the similarity constraint (Line 13).

By Corollary 1, the completeness of the algorithm is stated
by the following theorem.

Theorem 2. Algorithm 2 is complete and does not miss any

result of local similarity search when w ≥ τ + 1 + kmax(kmax−1)
2

.

When kmax = 1, only single tokens are used to generate
signatures, and the prefix length returned by Algorithm 1 is

Algorithm 3: GenSignature (x, τ, kmax)

1 S ← ∅;
2 l← PrefixLength(x, τ);
3 for i = 1 to kmax do
4 Pi ← { t | t ∈ x[1 . . l] ∧ class(t) = i } ; /* a multiset */
5 S ← S∪ { i-wise signatures generated from tokens in Pi };
6 return S

exactly τ + 1. Therefore, using standard prefix filtering is a
special case of the partitioned k-wise algorithm.

We analyze the cost of the partitioned k-wise algorithm
and compare it with the algorithm generating the same set
of candidate windows using single tokens, i.e., building index
with single tokens for all the classes and finding the pairs of
windows such that there exists a token class i in their prefixes
where at least i tokens are shared. Assume that the cost of
generating an i-wise signature is i and the cost of accessing
each entry in a postings list is 1. For signature generation,
the cost of the single token algorithm is

∑kmax
i=1 ni and the

partitioned k-wise algorithm is
∑kmax
i=1 i ·

(
ni
i

)
. Assume tokens

are independent and the average length of postings list is
|R|fi for a single token in class i. For an i-wise signature,
the expected length of its posting list is |R|(fi)i. Hence for
candidate generation, the cost of the single token algorithm
is
∑kmax
i=1 ni · |R|fi, and the partitioned k-wise algorithm is∑kmax

i=1

(
ni
i

)
· |R|(fi)i. The partitioned k-wise algorithm spends

more on signature generation than the single token algorithm
when kmax > 1 and ni > i, but saves candidate generation

cost when fi < ( ni

(nii )
)

1
i−1 .

The query processing performance of the partitioned k-wise
algorithm depends on the partitioning of token universe. We
leave this problem to Section 5 and investigate how to utilize
the overlap of adjacent windows first.

4. INTERVAL SHARING

4.1 Signature Generation
Two adjacent windows w(d, i) and w(d, i+ 1) share w − 1

tokens. It is very likely that they share most tokens in the
prefixes. This motivates us to share signature generation for
the adjacent windows.

We say a window x contains a signature s if s is generated
from x’s prefix. Instead of mapping a signature to a list of
windows in the index, we choose to map a signature to a list of
window intervals that contain this signature. A window interval
is in the form of d[u, v], representing that all the windows
between W (d, u) and W (d, v), including both, contain the
signature. For the sake of query processing performance, an
interval is to be maximal; i.e., neither W (d, u−1) nor W (d, v+
1) contains the signature. We slide through the document,
open an interval of the signature when we reach W (d, u), and
close the interval when we leave W (d, v). Then the interval
d[u, v] is inserted to the postings list of the signature.

For the first window of a document, its prefix is computed
and signatures are generated by Algorithm 3. An interval is
opened for each of these signatures. When a window slides to
the next one, it can be observed that if none of the tokens in
the prefix changes, no signature changes. Therefore intervals
are only opened or closed when any token changes in the prefix.
The intervals of signatures are all closed when we leave the
last window of a document.
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Based on the above observation, we design a prefix mainte-
nance algorithm (pseudo-code provided in Appendix A). The
basic idea is that when the window slides, we can exploit the
current prefix to compute the new one rather than starting
from scratch. Suppose x and x′ are two adjacent windows. P
denotes the prefix of x, whose length is l, and its coverage is
denoted by cov(P ). Let t1 be the first token of x and t2 be
the last token of x′; i.e., t1 is the outgoing token and t2 is the
incoming token when the window slides. The algorithm takes
x, l, t1, and t2 as input, and outputs a quadruple (x′, l′, So, Sc),
where l′ denotes the prefix length of x′, and So and Sc denote
the multisets of the signatures whose intervals are opened and
closed while x slides to x′, respectively. To compute the new
prefix, our idea is to delete t1 if it is in the current prefix, and
insert t2 if it precedes some token in the current prefix. Then
we compute the coverage (either τ , τ + 1, or τ + 2) of the
resulting prefix, and recover it to τ + 1 if not equal. To this
end, we propose the notion of temporary prefix, denoted by P ′,
to capture how the prefix changes with the slide. P ′ is first
initialized as P . Then t1 is deleted from P ′ if t1 is a token
of P ′, and t2 is inserted into P ′ if it precedes the last token
of P ′ in terms of the global order O. Then we cope with the
coverage of the resulting P ′. The procedure is divided into
the following cases.

• If cov(P\t1) < τ + 1, the coverage is below τ + 1 when t1 is
deleted. We check whether t2 recovers the coverage to τ + 1.

If so, it means that t1 is replaced by t2 in the prefix.
Due to Corollary 2, we remove from P ′ the tokens in the
highest class if they are non-covering, because t1 may be
in the highest class of P and its removal may cause the
other tokens in this class to be non-covering. If t1 6= t2, we
close intervals for the signatures that contain t1, generate
signatures by combining t2 and the tokens in the same class
in P ′, and open intervals for them.

Otherwise, it means that the removal of t1 reduces the
coverage but the inclusion of t2 does not recover it. We need
to include more tokens (denoted by ∆P ) into the prefix
to increase the coverage to τ + 1. If ∆P has tokens other
than t1 (note that t1 may be a token of x′ as well due to
the multiplicity), we close intervals for the signatures that
contain t1, generate signatures by combining every token in
∆P and those in the same class in P ′, and open intervals
for them.
• If cov(P\t1) = τ + 1, either t1 is not in the prefix or the

coverage remains τ +1 when it is deleted. We check whether
the coverage of P ′ exceeds τ + 1 due to t2.

If so, it means that the removal of t1 does not affect
the coverage but the inclusion of t2 make it exceed τ + 1.
We need to remove tokens (denoted by ∆P ) from P ′ to
decrease the coverage to τ + 1. The tokens in the highest
class of P ′ are then removed if they are non-covering tokens.
If ∆P has tokens other than t2, we close intervals for the
signatures that contain any token in ∆P , generate signatures
by combining t2 and the tokens in the same class in P ′, and
open intervals for them.

Otherwise, it means that neither t1 and t2 affects the
coverage. No interval changes in this case.

Example 5. Figure 2 shows an example of the maintenance
of prefix. w = 4, and τ = 1. d is a document consisting of
seven tokens. Suppose tokens are sorted in alphabetical order.
A,B,C, and D are class 1 tokens. E,F , and G are class 2
tokens. Tokens in the prefix are underlined for each window.

E G A F C B Dd:

E G A Fw(d, 1):

G A F Cw(d, 2):

A F C Bw(d, 3):

F C B Dw(d, 4):

Figure 2: Example of Prefix Maintenance

Starting with W (d, 1), the prefix is {A,E, F }. Signatures A
and EF are generated, and intervals are opened for them. When
the window slides to W (d, 2), E leaves the window. Since it is in
the prefix of W (d, 1), the temporary prefix becomes {A,F }. C
enters the window, and it is inserted into the temporary prefix
because C < F . Now the coverage is τ + 1. We remove the
highest class which consists of a non-covering token F . Hence
the prefix of W (d, 2) is {A,C }. Because E 6= C, the interval of
EF is closed, and the interval of C is opened. For W (d, 3), G
leaves the window and it is not in the prefix of W (d, 2). The new
token B is inserted into the temporary prefix because B < C.
Since the coverage is τ + 2, C is removed to recover the coverage
to τ + 1. Hence the prefix of W (d, 3) is {A,B }. The interval
of C is closed, and the interval of B is opened. For W (d, 4),
A leaves the window and it is in the prefix of W (d, 3). The
temporary prefix becomes {B }. Then D is not inserted because
D ≮ B. Since the coverage is τ , C is included to recover it to
τ + 1. Hence the prefix of W (d, 4) is {B,C }. Because A 6= C,
the interval of A is closed, and the interval of C is opened. When
reaching the end of d, we close the intervals of B and C.

The signatures and their corresponding intervals are A :
{ d[1, 3] }, EF : { d[1, 1] }, C : { d[2, 2], d[4, 4] }, B : { d[3, 4] }.

To efficiently implement the prefix maintenance algorithm,
the tokens of window x can be stored in a binary search tree,
so that the deletion of t1 and the insertion of t2 take O(logw)
time. We do not materialize the prefix P or P ′ but record
the prefix length l and l′. Hence checking if a token is in
P ′ takes O(logw) time and any update on P ′ takes O(1)
time. By keeping track of the number of tokens in each class,
any coverage-related operation takes O(1) time. The loop of
deleting the highest class from the temporary prefix is repeated
at most (kmax - 1) times, hence taking O(kmax) time in the
worst case and O(1) time in the average case. Ignoring the cost
of generating signatures, the time complexity is O(kmax+logw)
in the worst case and O(logw) in the average case.

A subtle case is that the multiplicity of a token in the
prefix may cause duplicate signatures in a window, and hence
multiple opens or closes of an interval. E.g., kmax = 1, and the
prefixes of windows W (d, 1) to W (d, 5) are {A,B }, {A,A },
{A,B }, {A,B }, and {B,C }, respectively. The interval of
signature A is opened at W (d, 1) and W (d, 2), and closed
at W (d, 2) and W (d, 4), hence resulting in two overlapping
intervals d[1, 4] and d[2, 2] which violate the maximality of
an interval. To handle this case, we use a counter γ to store
the times an interval has been opened. When it is opened
for the first time, γ is initialized as 1. It is increased by 1
when an open occurs, and decreased by 1 when a close occurs.
Only the first open (when γ = 1) and the last close (when
γ = 0) are treated as “true” open and close of an interval,
while the others are treated as “false” opens or closes. We
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only insert the interval into the index for a true close. In the
above example, a true open occurs at W (d, 1) and a true close
occurs at W (d, 4), hence resulting in a maximal interval d[1, 4].
In the rest of the paper, we mean a true open or close when
referring to an open or close of an interval unless otherwise
noted, and the output of the prefix maintenance algorithm
only involves signatures with true open or close intervals.

4.2 Candidate Generation
By utilizing index on window intervals, for a query window,

we generate candidates in the form of d[u, v] (called candidate
interval), indicating that all the windows between W (d, u) and
W (d, v), including both, share at least a signature with the
query window in their prefixes.

We use the same method to generate signatures for both
indexing and query processing. It can be seen that for two
consecutive query windows W (q, i) and W (q, i + 1), their
candidate intervals are the same if the two windows generate
the same set of signatures. We exploit this property and
devise the partitioned k-wise algorithm equipped with interval
sharing. The pseudo-code is shown in Algorithm 4.

To index data documents, it iterates through the data docu-
ments in D, computes prefix and generates signatures for the
first window of each document by Algorithms 1 and 3 (Line 4),
and processes the other windows by the prefix maintenance al-
gorithm (Line 6). Signatures are generated and corresponding
window intervals are indexed (Line 8).

To process queries, we also call Algorithms 1 and 3 to
compute prefix and generate signatures for the first query
window (Line 10), and call the prefix maintenance algorithm
to handle the other windows (Line 13). The candidate intervals
of a query window W (q, i) is stored in a multiset Ai. With the
set of signatures whose intervals are open for the first query
window, as returned by Algorithm 3, for each signature s in the
set we probe the index to retrieve its (data) window intervals
and insert them into A1 (Line 11). For the other query windows,
we monitor So and Sc output by the prefix maintenance
algorithm, which are the multisets of the signatures whose
intervals are opened and closed, respectively, while the query
window slides. If So and Sc are both empty, indicating that
W (q, i) and W (q, i+ 1) generate the same set of signatures,
then Ai+1 = Ai (Line 14). Otherwise, we let Ai+1 = Ai, probe
the index for each signature in So (resp. Sc), and then insert
into (resp. delete from) Ai+1 the (data) window intervals
retrieved from the index (Lines 15 – 16). Finally, we merge
intervals in each Ai to eliminate the overlap among candidate
intervals (Line 18) and perform verification (Line 20).

Example 6. Consider an index mapping two signatures s1
and s2 to the window intervals of d1 and d2:

Is1 ={ d1[11, 13], d2[13, 15] },
Is2 ={ d1[12, 14], d2[11, 14] }.

Consider a query of three windows. Suppose both W (q, 1) and
W (q, 2) generate a signature s1, and W (q, 3) generates two
signatures s1 and s2. Before merging, the candidate intervals of
the three query windows are:

A1 ={ d1[11, 13], d2[13, 15] },
A2 ={ d1[11, 13], d2[13, 15] },
A3 ={ d1[11, 13], d2[13, 15], d1[12, 14], d2[11, 14] }.

We obtain A1 by probing the postings list of s1, and let A2 = A1

because they generate the same signature. For A3, we probe the

Algorithm 4: PartitionedKWiseInterval (D, q, w, τ, kmax)

1 T ← ∅, Ii ← ∅;
2 foreach d ∈ D do
3 x←W (d, 1);
4 l← PrefixLength(x, τ), So ← GenSignature(x, τ, kmax);
5 for i = 1 to |d| do
6 (x, l, So, Sc)← MaintainPrefix(x, l, d[i], d[i+ w]);
7 foreach s ∈ Sc and its interval [u, v] do
8 Is ← Is ∪ { d[u, v] };

9 y ←W (q, 1);
10 l← PrefixLength(y, τ), So ← GenSignature(y, τ, kmax);
11 A1 ←

⋃
s∈So Is;

12 for i = 1 to |q| do
13 (y, l, So, Sc)← MaintainPrefix(y, l, q[i], q[i+ w]);
14 Ai+1 ← Ai;
15 if So 6= ∅ or Sc 6= ∅ then
16 Ai+1 ← (Ai+1\

⋃
s∈Sc Is) ∪

⋃
s∈So Is;

17 for i = 1 to |q| do
18 MergeInterval(Ai);
19 foreach d[u, v] ∈ Ai do
20 T ← T ∪ VerifyInterval(W (q, i),W (d, u . . v));

21 return T

index and insert the window interval of s2. After merging, A3

becomes { d1[11, 14], d2[11, 15] }.

4.3 Verification
Because of the overlap between adjacent windows, the veri-

fication of a query window against a candidate interval can be
performed in a rolling fashion. To compute the intersection of
a query window y and a data window x, we use two hash tables
to count the multiplicities of their tokens, and the intersection
O(x, y) =

∑
t∈y min(mul(t, x),mul(t, y)). For the next data

window x′, since only the multiplicities of the outgoing and
the incoming tokens change, we can compute O(x′, y) with
four operations on the two hash tables, including a deletion,
an insertion, and two lookups. Similarly, for the next query
window y′, we can obtain its hash table by two operations on
the existing hash table of y instead of counting multiplicities
by starting from scratch.

The above method spends w hash table operations for
the first query window, 2 for any other query window, and
2w + 4(v − u) for a candidate interval d[u, v]. Based on this
observation, candidate intervals can be further merged if they
are close to each other. Consider two candidate intervals
d[u1, v1] and d[u2, v2], where u2 > v1. If u2 − v1 < w

2
, they

will be merged into d[u1, v2] and verified. This is because there
are 4w+ 4(v2 + v1 − u2 − u1) hash table operations to process
the two separate intervals, and 2w + 4(v2 − u1) for a merged
interval. The latter is less than the former when u2 − v1 < w

2
,

even if the windows between W (d, v1 + 1) and W (d, u2 − 1)
are not candidates. We integrate this method to the interval
merge step (Line 18) in Algorithm 4.

Another optimization is that we can early terminate the
verification of an interval seeing an already computed intersec-
tion. Consider a query window x and a window W (d, j) from
an interval d[u, v]. If w − O(x,W (d, j)) = τ + δ, where δ > 0,
then none of the windows between W (d, j) and W (d, j + δ− 1)
is a result, because they differ by at most δ − 1 tokens from
W (d, j) and thus at least τ + 1 tokens from x. To exploit this
observation, we skip verifying the remaining windows of the
interval if j + δ > v.
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5. COST ANALYSIS AND TOKEN UNIVERSE
PARTITIONING

We analyze the cost of Algorithm 4 and based on the analysis
we devise the token universe partitioning algorithm.

5.1 Cost Analysis
For a given query q, the query processing cost consists of

the costs in three phases: signature generation, candidate
generation, and verification, i.e.,

Cquery proc(q) = Csig gen(q) + Ccand gen(q) + Cverify(q).

For the signature generation phase, we ignore the prefix
computation costs of the algorithms compared and consider the
costs of generating signatures only. A signature is generated
when its interval is opened or closed (including false open and
close). We assume that the cost of generating a signature s
is ccomb · |s|, i.e., the cost of combining a token multiplied by
the number of constituent tokens in s. Then the signature
generation cost of Algorithm 4

Csig gen(q) = ccomb · 2
∑
s∈Sall

|s|, (2)

where Sall denotes the multiset 4 of signatures generated in
the signature generation phase. We compare with Algorithm 2
which processes each window individually. Let s.u and s.v
denote the two ends of a window interval that contains s.
Algorithm 2’s signature generation cost is ccomb ·

∑
s∈Sall

(s.v−
s.u+ 1)|s|. Algorithm 4 saves signature generation cost for
the signatures such that s.v − s.u > 1. In the worst case,
nothing is shared in the prefixes of adjacent windows, and the
signature generation cost of Algorithm 4 is twice as much as
Algorithm 2.

The candidate generation cost of Algorithm 4 consists of
two parts: accessing inverted index and merging candidate
intervals. Index is accessed when the interval of a signature
s is opened or closed (true open and close only). Merging
only occurs if two adjacent windows have different candidate
intervals. Assuming the cost of accessing an interval is cint,
the candidate generation cost

Ccand gen(q) = cint · (2
∑

s∈Strue

|Is|+
|q|∑
i=1

1Si 6=Si−1 ·
∑
s∈Si

|Is|).

(3)

Strue denotes the multiset of signatures generated by a true
open in the signature generation phase. |Is| denotes the
number of window intervals in the postings list of s. Si
denotes the signatures whose intervals are open when the
window slides to W (q, i). 1Si 6=Si−1 is the indicator function
that returns 1 if Si 6= Si−1 or 0 otherwise (S0 is defined
as an ∅). For Algorithm 2, the candidate generation cost is

cint ·
∑|q|
i=1

∑
s∈Si |I

′
s|, where I ′s denotes the number of windows

in the postings list of s. Hence Algorithm 4 saves cost for
the signatures that are shared by more than two consecutive
windows in both the query and the data windows. In the
worst case, the candidate generation cost of Algorithm 4 is
three times as much as Algorithm 2.

For verification, the first query window spends w operations
to count its token multiplicities, and every other query window

4A signature may be generated multiple times. It is inserted
into S when its interval is opened, including a false open.

spends 2 operations, hence 2|q| − w operations in total. To
count the token multiplicities of a candidate interval d[u, v],
there are 2w + 4(v − u) operations (early termination not
considered). Assuming the cost of a hash table operation is
chash, the verification cost of Algorithm 4

Cverify(q) = chash · (2|q| − w +

|q|∑
i=1

∑
d[u,v]∈Ai

2w + 4(v − u)),

(4)

where Ai denotes the set of candidate intervals of W (q, i) after
merging. When w > 1, this cost is always less than the cost of

Algorithm 2, which is chash · (w|q|+
∑|q|
i=1

∑
d[u,v]∈Ai 2w(v −

u+ 1)), even if in the worst case.

5.2 A Greedy Partitioning Algorithm
Since the token universe partitioning can be done offline and

queries are processed online, our goal is to optimize the query
processing for multiple queries (denoted by a query workload
Q) rather than a single query. Instead of resorting to a
straightforward equi-width partitioning, we leverage the above
cost model and can formulate the token universe partitioning
as an optimization problem.

Given a query workload Q, the processing cost of each query
is summed up to the total processing cost of the workload:

Cworkload(Q) =

|Q|∑
q=1

Cquery proc(q).

Problem 2. Given a token universe U , a collection of data
documents D, a query workload Q, and parameters w, τ , and
kmax, determine the global order O and divide the token universe
into kmax partitions such that Cworkload(Q) is minimized.

When kmax = 1, this problem becomes finding the optimal
global order for standard prefix filtering. It is likely to be
intractable and hence most existing prefix filtering-based algo-
rithms sort by increasing document frequency as a heuristic [10,
4, 35, 33] . The problem is harder when kmax > 1. Moreover,
the computation of Cworkload(Q) for a partitioning P incurs
considerable overhead because we need to build index for D
with respect to P and then process the queries in Q to sum
up the cost. Seeing these factors, we design an algorithm to
find a good partitioning while bounding the number of times
computing Cworkload(Q).

Our algorithm is based on a greedy and two-level blocking
strategy. We first choose to sort in U by increasing order
of window frequency. Then we divide U into 1-wise and
2-wise tokens, find a best border which yields the smallest
Cworkload(Q), and then divide the partition of 2-wise tokens
into 2-wise and 3-wise tokens. This is repeated until kmax

is reached. For a border of i-wise and (i + 1)-wise tokens,
there can be at most |U| + 1 possibilities. Since computing
Cworkload(Q) for such number of times is prohibitive for large
|U|, we choose to divide U into blocks of size B1, and pick the
block boundary which yields the smallest Cworkload(Q) if we
divide the partition there. Denoting this block boundary by bi,
then we divide two adjacent blocks, [bi−1, bi] and [bi, bi+1], into
sub-blocks of size B2, and pick the best sub-block boundary
as the partition boundary. The computation of Cworkload(Q)

is invoked no more than (kmax − 1)(d |U|
B1
e+ 2dB1

B2
e − 1) times.

Note that empty partitions are allowed by the greedy algo-
rithm, and hence it is not mandatory to have i-wise tokens
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A1 A2 A3 A4 A5 A6 A7 A8

b1 b2 b3 b4 b5p1 p2 p3 p4

Figure 3: Greedy-and-Blocking Partitioning

for any i ∈ [1, kmax]. We also argue that the reason why we
choose to find a good partitioning by the cost model instead
of simply setting a selectivity threshold is that combining any
two tokens does not always make the selectivity approach the
threshold due to the existence of correlations between tokens,
e.g., “Kuala” and “Lumpur”.

Example 7. Consider a universe consists of eight tokens,
kmax = 3, B1 = 2, and B2 = 1. The universe is divided into 4
blocks. Figure 3 shows the tokens and the block boundaries. We
first divide the universe into 1-wise and 2-wise tokens. Suppose
the costs of dividing at b1 · · · b5 are 10, 8, 9, 10, 11, respectively.
We pick the smallest one, b2, and then divide [b1, b2] and [b2, b3]
into sub-blocks of size B2. Suppose the total costs of dividing at
p1 and p2 are 9 and 7, respectively. p2 is chosen to divide the
universe, and thusA1 · · ·A3 are 1-wise tokens, andA4 · · ·A8 are
2-wise tokens. Then we proceed to divide the latter into 2-wise
and 3-wise tokens. Suppose the total costs of dividing at p2 and
b3 · · · b5 are 8, 8, 5, 7, respectively. We pick the smallest one,
b4, and then consider sub-block boundary p3 and p4. Suppose
the costs of dividing at p3 and p4 are 4 and 6, respectively. p3 is
chosen to divide A4 · · ·A8. Finally, A1 · · ·A3 are 1-wise tokens,
A4 · · ·A5 are 2-wise tokens, and A6 · · ·A8 are 3-wise tokens.
The computation of Cworkload(Q) is invoked 13 times.

In case that a historical query workload is not available,
a portion of data documents can be sampled as a surrogate,
denoted by Q′. Its size is controlled by a sample ratio ρ; i.e.,
|Q′| = ρ · |D|. We choose this option in our experiments.

6. COPING WITH LARGE THRESHOLDS
A large τ may cause large number of combinations in the

signature generation. Assume in a window x, the τ+1 coverage
is equally distributed to the kmax partitions; i.e., each class
in its prefix has a coverage of τ+1

kmax
. For each class, there

are ( τ+1
kmax

+ i− 1) tokens and thus
( τ+1
kmax

+i−1

i

)
combinations

generated. When τ = 99, the total number of combinations
generated from the prefix is 23,750 when kmax = 4.

To scale up for large τ , recall in Section 3.2 we partition the
token universe and tokens are only combined with others from
the same partition. We further exploit this idea and divide
each i-wise partition in the token universe into m equi-width
sub-partitions. All these m sub-partitions use i-wise signatures,
and combinations are only generated within each sub-partition.
Since single tokens are used in 1-wise partition, we choose
not to divide it into sub-partitions. To compute the prefix
length, Lemmas 3 and 4 also apply for sub-partitions. Thus
we modify Algorithm 1 by summing up the coverage in each
sub-partition until it reaches τ + 1.

Example 8. Consider the token universe in Figure 4. kmax =
3, and the solid lines separate the three partitions. τ = 5. Con-
sider a window x. Before further partitioning, the prefix length
is 4 + 5 = 9 and there are 6 + 10 = 16 combinations gener-
ated. When m = 3, 2-wise and 3-wise partitions are further
divided into 3 sub-partitions, respectively, as shown by the dashed

A B C D E F G H I J K L M Nx:

U :

cov:

1-wise 2-wise 3-wise

1 1 1 1 2

Figure 4: Example of Further Partitioning

lines. The arrows show which classes and which sub-partitions
its tokens belong to. By further partitioning, the prefix length
is increased to 2 + 2 + 3 + 3 + 4 = 14, but the number of
combinations is reduced to 1 + 1 + 1 + 1 + 4 = 8.

Assume the above mentioned τ+1
kmax

coverage is equally dis-

tributed to the m sub-partitions. We need ( τ+1
m·kmax

+ i− 1)
tokens for each sub-partition of an i-wise partition, and thus in
total m(i−1) more tokens in each i-wise partition in the prefix.

On the other hand, there are m
( τ+1
m·kmax

+i−1

i

)
combinations

generated in each i-wise partition. In consequence, we trade
prefix length for combination number. If we set m as α(τ + 1),

the number of combinations will be α(τ + 1)
( 1
α·kmax

+i−1

i

)
,

hence proportional to τ + 1 for a fixed i, as opposed to the
exponential increase with τ before further partitioning. Ac-
cording to the experiments, α = 0.2 gives best performance
and we use this setting to compute token universe partitioning
and process queries when τ is large.

To adapt Corollary 1 for sub-partitions, the upper bound of
prefix length becomes τ + 1 +m

∑kmax−1
1 . For Corollary 2, in

the highest class of a prefix, the last non-empty sub-partition
of tokens has a coverage above zero.

7. EXPERIMENTS

7.1 Experiment Setup
The following algorithms are compared in the experiment.
• Adapt is a state-of-the-art algorithm for set similarity search

and join [33]. It leverages extended prefix filtering and com-
putes an appropriate prefix length for each query object
using a cost model. To adapt the algorithm to local similar-
ity search, we materialize the windows of data and query
documents as its data and query objects, respectively.
• Faerie is a state-of-the-art algorithm for approximate dictionary-

based entity extraction [13]. It finds approximate occur-
rences of the indexed entities in a query document. We
materialize the windows of data documents as entities. The
specific implementation we use considers only candidate
windows of size w, and our overlap constraints are converted
into corresponding equivalent Jaccard constraints.
• FBW is a Winnowing-family algorithm [31] which returns

approximate answers to the problem of finding documents
that share w − q + 1 consecutive token q-grams while tol-
erating qτ errors, where q is the q-gram length. We use
its fingerprinting scheme to generate candidates and they
are verified against our similarity constraint. q-gram length
is set to 2 to balance the number of results and query
processing time.
• pkwise, short for partitioned k-wise, is our proposed algo-

rithm equipped with interval sharing for adjacent windows.
We hash signatures into 4-byte integers. The number of
sub-partitions m is set to 1 unless otherwise specified.
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Table 1: Dataset Statistics
Dataset |D| |Q| avg. |d| avg. |q| |U|
REUTERS 7,791 1,000 237.2 231.1 33,260
TREC 185,666 1,000 198.2 214.1 148,244
PAN 10,483 1,000 27,026.8 721.6 1,846,623

Other methods for similarity search and join, e.g., [3, 4, 21, 35],
and approximate entity extraction, e.g., [9], are not compared
since prior work [35, 33, 13] showed they are outperformed by
the above selected methods. We do not consider the method
in [2] developed for approximate entity extraction because it
relies on WtEnum [3] which enumerates minimal subset of
entities whose sum of weights is no less than the threshold. By
materializing query windows as entities, the number of subsets
per window is

(
w

w−τ

)
, which is prohibitive for local similarity

search, e.g., 5.4× 1020 when w = 100 and τ = 20.
We select three publicly available datasets which were used

in prior related studies:
• REUTERS is a set of 19K Reuters news stories 5. We

extract news body as documents.
• TREC is a set of references from MEDLINE. It is used for

the TREC-9 Filtering Track Collections 6. We extract the
233K paper abstracts as documents.
• PAN is used in the plagiarism detection task of PAN

Workshop and Competition of 2010 (PAN-PC-10) 7. It
contains about 11K source documents and 16K suspicious
documents that may contain plagiarism.
In order to make the numbers of documents in all the

settings are the same, short documents with less than 100
tokens are removed from the corpora. For PAN, we use source
documents as data documents and sample 1,000 queries from
suspicious documents. Each query is composed of a number
of paragraphs which contain true plagiarism. Non-English
documents are removed. For REUTERS and TREC, we
sample 1,000 documents as queries and take the rest as data
documents. Table 1 shows statistics about the datasets.

Average query processing time is measured by varying τ
while fixing w as 100, and by varying w while fixing τ as 5.
For Adapt and Faerie, window materialization is not counted
towards their index construction or query processing time.

The experiments were carried out on a PC with an Intel Xeon
E5620 2.4GHz Processor and 96GB RAM, running Ubuntu
14.04.3. The algorithms were implemented in C++ and in a
main memory fashion.
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Figure 5: Effect of kmax

We sample a subset of data documents as query workload Q′
and partition token universe with the algorithm proposed in

5http://www.daviddlewis.com/resources/testcollections/
reuters21578/
6http://trec.nist.gov/data/t9 filtering.html
7http://www.uni-weimar.de/en/media/chairs/webis/
corpora/corpus-pan-pc-10/
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Figure 6: Effect of Partition & Interval

Section 5.2. The default value of kmax is 4. The values of ccomb,
cint, chash in Equations 2 – 4 are 10, 2, and 1, respectively.
B1 = 0.1|U| and B2 = 0.01|U|. Then we process the queries
Q (different from Q′) with the obtained partitioning results.
As for the sample ratio of query workload, the experiment
results show its effect on the query processing performance is
not obvious. E.g., the average query processing times are 4.64,
4.44, 4.41, 4.39, and 4.39 milliseconds, respectively, when the
sample ratio changes from 0.5% to 2.5% on REUTERS when
w = 100 and τ = 10. We choose 1% as the sample ratio.

7.2 Effect of Partitioned k-wise Signatures
Figures 5(a) – 5(b) show the average query processing times

with varying τ and w on REUTERS for kmax ∈ [1, 5]. Note
that the algorithm becomes standard prefix filtering when
kmax = 1. kmax = 1 has the worst performance and is up to
two orders of magnitude slower than the other kmax settings,
especially for large τ or small w. The reason is that there are
frequent tokens in its prefix and they cause large candidate
numbers. When w = 100 and τ = 5, a kmax of 2 or 3 is as
good as 4 or 5. But when w decreases or τ increases, setting
kmax as 4 or 5 runs 2 times faster than 2 or 3 because of looser
similarity constraints which call for signatures with better
selectivity. The results demonstrate that query performance
can be improved by combining tokens. We set kmax as 4 in
the rest of the experiments (on par with kmax = 5 on query
processing but faster on token universe partitioning).

We evaluate the effect of partition by comparing partitioned
k-wise with non-partitioned k-wise, i.e., all signatures with a
fixed number of tokens. The average query processing times
with varying τ and w on REUTERS are shown in Figures 6(a)
– 6(b). The running times are decomposed into three phases.
The partitioned and the non-partitioned algorithms are denoted
by P+I and Non-P, respectively. For partitioned k-wise, we
set kmax = 4. For non-partitioned k-wise, we choose k = 3
since it gives best performance for most w and τ settings. As
seen from the figures, partitioned k-wise substantially saves
signature generation time but spends more on verification time
since 3-wise signatures are more selective than the mixture of
1 to 4-wise signatures. Considering the two effects, partitioned
k-wise exhibits a reduction in overall query processing time in
most cases. The speedup is more significant for larger τ or
smaller w, and can be up to 2.4 times. We also observe an
exception that non-partitioned k-wise spends slightly less time
when w = 100 and τ = 5. The reason is that both algorithms
spend very short time on signature generation, and hence the
gain of partitioned k-wise in this phase is small, resulting in
an overall slower query processing.

7.3 Effect of Interval Sharing
We evaluate the effect of the interval sharing technique
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Figure 7: Comparison with Alternatives - Index

proposed in Section 4 and plot the average query processing
times with varying τ and w on REUTERS in Figures 6(a)
– 6(b). The algorithms with and without interval sharing are
denoted by P+I and Non-I, respectively. By taking advantage
of overlapping windows, the query processing time is reduced
by 2.6 to 5.5 times by varying τ . By varying w, the speedup
is 2.2 to 5.5 times, and different trends are observed for
the algorithms with and without interval sharing. This is
because for larger w and a fixed τ , the similarity constraint
becomes tighter and thus candidate number decreases, but
processing longer windows spends more time. The two factors
result in the fluctuation of query processing time without
interval sharing. When interval sharing is applied, processing
continuous windows becomes faster and thus the effect of the
first factor dominates. We also measure the average sharing
by computing the Jaccard similarity between the prefixes of
every two adjacent windows and taking the average. When
w = 100 and τ grows from 5 to 20, the sharing in query
windows slightly decreases from 0.966 to 0.963. When τ = 5
and w grows from 25 to 100, the sharing in query windows
increases from 0.872 to 0.966. A similar result is observed
on the sharing in data windows. We also notice that when
w = 25 and τ = 5, the algorithm with interval sharing
spends more time on signature generation. The reason is that
window size is small and sharing is relatively low, and thus
the gain from sharing does not counteract the overhead on
maintaining prefixes and intervals. Nonetheless, candidate
generation and verification still benefit from interval sharing,
hence resulting in less overall query processing time in this
setting. Another interesting result is that by indexing intervals
instead of individual windows, index size is reduced by 3 to 14
times (e.g., from 77.4MB to 5.4MB when w = 100 and τ = 5),
and the reduction is more remarkable for larger w.

7.4 Comparison with Alternative Methods
Index sizes are compared first. Figures 7(a) – 7(d) show

the index sizes of the algorithms with varying τ and w on
REUTERS and TREC. Since Adapt and Faerie index all the
tokens in each window, they have the same index sizes and
they only vary with w. FBW’s index size is significantly smaller
than the exact algorithms due to its signature selection scheme.
Among the exact algorithms, pkwise has the smallest index
size, because (1) only the signatures generated from prefixes

Table 2: Index Construction Time (REUTERS)
w τ Adapt Faerie FBW pkwise (part + index)

25 5 35s 28s 1.1s 303s + 10.3s
50 5 61s 47s 1.3s 172s + 4.9s
75 5 86s 66s 1.4s 147s + 3.7s

100 5 100s 72s 1.4s 133s + 2.9s
100 10 100s 72s 1.4s 377s + 4.7s
100 15 100s 72s 1.4s 859s + 9.5s
100 20 100s 72s 1.4s 2009s + 14.3s
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Figure 8: Comparison with Alternatives - Runtime

are indexed by pkwise, as opposed to Adapt and Faerie which
index every token in every window, and (2) interval sharing
further reduces pkwise’s index size. The gap ranges from 3.5
to 76.1 times on REUTERS and 4.1 to 86.7 times on TREC.

The corresponding index construction times on REUTERS
are shown in Table 2. For pkwise we decompose the time into
two parts: computing token universe partitioning and indexing
data documents. We observe that the indexing times of Adapt
and Faerie only change with w. Both parts of pkwise’s index
construction time increase with looser similarity constraint
(smaller w or larger τ ). Despite more time consumption on the
computation of partitioning, pkwise spends less time indexing
the data documents than the other two exact algorithms.
We argue that the computation of partitioning can be done
offline and the output can be used on data documents with
approximately the same token frequency distribution.

Figures 8(a) – 8(d) show the average query processing times
of the algorithms on REUTERS and TREC by varying τ and
w. Since the other competitors are not equipped with interval
sharing, for the purpose of fair comparison, we also show
pkwise’s performance when interval sharing is disabled (denoted
by pkwise-nonint). Faerie is unable to finish processing the 1,000
queries on TREC in 24 hours, and thus its performance is not
shown on TREC. On REUTERS, Faerie is the least competitive
and two to three orders of magnitude slower than the other
algorithms. Although its candidate number is very close to the
result number, its filtering is very time-consuming due to the
heap-based candidate generation. This result suggests that
Faerie is not efficient for local similarity search where windows
are much longer than normal entities (on average less than
ten tokens). For Adapt and pkwise, both times increase with τ
and decrease with w. pkwise is always faster than Adapt. The
speedup is 4.1 to 12.8 times on REUTERS and 3.3 to 6.3 times
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Figure 10: Large Thresholds

on TREC. The speedup not only comes from interval sharing
but also partitioned k-wise signatures, as it can be seen that
pkwise-nonint also outperforms Adapt (by up to 4.3 times) in
every setting. Although FBW is significantly faster than the
exact methods, it returns only 10.1% to 42.7% results, and
the percentage is low for small w.

We evaluate the scalability of the algorithms with varying
dataset size. 20% to 100% data documents are sampled from
TREC and PAN. The query processing times (w = 100 and
τ = 20 on TREC and w = 25 and τ = 5 on PAN) are given
in Figures 9(a) – 9(b). Faerie is not shown due to its much
longer query processing time. The times of the algorithms
grow approximate linearly with the dataset size. pkwise has
a slower growth rate than Adapt (3.8 and 7.1 times faster on
TREC and PAN, respectively).

7.5 Large Thresholds
Figure 10(a) shows the average query processing time of

pkwise on PAN with varying large thresholds when w = 500.
The comparison with Adapt and Faerie is excluded because
loading and indexing the materialized windows exceeds the
main memory, and they are slower than pkwise on a sampled
subset of 100 data documents when w = 500 and τ = 100
by 4.4 and 213.7 times, respectively. We set the number of
sub-partitions m to 1, 5, 10, 15, 20, and 25. With larger m,
the number of combinations in signature generation is reduced
but prefix length grows and thus selectivity is compromised.
This effect can be seen: in most cases, the time first drops
with m and then rebounds. Another trend is that the best m
increases with τ : 1, 5, 10, 25, and 25 when τ = 20, 40, 60, 80,
and 100, respectively. Based on the results, we suggest users
choose m = 1 when m ≤ 20 and m = 0.25 · τ when m > 20.

8. RELATED WORK
Similarity search and join have been studied by many re-

searchers due to its importance in many applications, including
near-duplicate document detection. To answer (multi)set sim-
ilarity queries, many existing methods adopted the prefix
filtering framework, which was proposed by Chaudhuri et
al. [10] and later improved by subsequent studies [4, 35, 33].

Other methods include merging postings lists [27, 17, 21] and
partitioning data by pigeon-hole principle [3], etc. Approxi-
mate solutions were also investigated; e.g., MinHash [7] and
LSH [16, 28]. Another body of work studied the processing
of string similarity queries by regarding documents as strings;
e.g., [22, 34, 26, 12, 36]. Edit distance is usually adopted to
capture the string similarity. We refer readers to [19] for an
experimental comparison of prevalent methods.

Document fingerprinting methods have been extensively
studied, aiming at finding near-duplicate documents or reused
contents. Most proposed solutions can be divided into two
categories: overlapping methods and non-overlapping meth-
ods, namely, by selecting overlapping or non-overlapping text
segments as fingerprints. Notable overlapping methods are 0
mod p [25], super-shingles [8], Winnowing [29], Hailstorm [18],
etc. Non-overlapping methods include hash breaking[6], DCT
fingerprinting [30], qSign [20], learning hash code [37], etc.
There are also methods using other features; e.g., I-Match [11]
uses medium document frequency tokens and SpotSigs [32]
selects tokens around stopwords.

While our paper and the above related studies focus on
dealing with unstructured data, there are also a few studies
on detecting copies in structured data [15, 5, 14, 24].

Token combinations (token sets) have been used to solve
approximate ad-hoc entity extraction [2], error-tolerant set
containment [1], and similarity queries on multi-attribute
data [23]. The idea of partition and enumeration is used for
similarity join [3]. We briefly discuss our differences: (1) To
ensure the correctness, in [2] and [1], every minimal subset of
entities or queries with sum of weight no less than the threshold
is covered by at least one token set selected by a cost model.
[3] resorts to pigeon-hole principle. Our method extends prefix
filtering to enumerate token combinations. (2) In [3], records
are converted to vectors and divided into two-level equi-sized
partitions, and partition combinations are enumerated on the
second level. In our method, token universe is partitioned using
a cost model and we combine tokens rather than partitions.
(3) [23] uses standard prefix filtering, and tokens of different
attributes are organized in a tree and checked one by one to
find candidates. We use hash values of token combinations to
find candidates for a single attribute problem. (4) We take
advantage of overlap between adjacent windows by interval
sharing, which is not covered by the other methods.

9. CONCLUSION
We study the problem of local similarity search which iden-

tifies documents that share a common sliding window with the
query but differ by at most τ tokens. Our solution is based on
two observations: (1) token combinations are more selective
than single tokens, and (2) overlap exist between adjacent
sliding windows. We partition the token universe and consider
using different numbers of tokens in a combination. A practical
algorithm is devised to compute a good partitioning of the
token universe. The techniques to support large thresholds are
developed. Extensive experimental evaluation on real datasets
demonstrates the superior query processing performance of
the proposed method to alternative solutions.
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APPENDIX
A. PSEUDO-CODE OF PREFIX MAINTE-

NANCE ALGORITHM
The pseudo-code of the prefix maintenance algorithm for

signature generation is shown in Algorithm 5.

B. PROOFS
The proof of Theorem 1 is given below.

Proof. We compare x[lx] and y[ly], the last tokens in x’s
and y’s prefixes. Assume x[lx] ≤ y[ly]. If Sx ∩ Sy = ∅, by
Lemma 4, there must be at least τ + 1 tokens in x[1 . . lx]
but not in y[1 . . ly]. Because x[lx] ≤ y[ly], these tokens are
not in y[ly + 1 . . |y|] either. Therefore, there must be at
least τ + 1 tokens in x but not in y, hence contradicting
w −O(x, y) ≤ τ .

We give the proof of Corollary 1.

Proof. ni − i+ 1 ≤ 0 when ni < i. By Lemma 3, ∀i, ni −
i + 1 ≤ cov(i). By Lemma 4 and Algorithm 1,

∑kmax
i=1 ni −

i+ 1 ≤
∑kmax
i=1 cov(i) = τ + 1. Therefore

∑kmax
i=1 ni ≤ τ + 1 +∑kmax

i=1 (i − 1). The left side of the inequality is exactly the

prefix length, and the right side equals to τ + 1 +
∑kmax−1
i=1 i =

τ + 1 + kmax(kmax−1)
2

.

We give the proof of Corollary 2.

Proof. Assume that coverage of the tokens in class h is
zero. Since the total coverage of the prefix is τ+1, the tokens in
class h can be removed from the prefix, and the total coverage
is still τ + 1. It contradicts that the prefix is shortest.

C. EXTENSIONS TO WEIGHTED CASE
In the weighted case of local similarity search, each token t

is assigned a weight wt(t). Let wt(x) denote the accumulated
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Algorithm 5: MaintainPrefix (x, l, t1, t2)

1 P ← x[1 . . l], So ← ∅, Sc ← ∅;
2 if x is the last window then
3 Sc ← signatures generated from P ;
4 return (∅, 0, So, Sc)
5 x′ ← (x\t1) ] t2, P ′ ← P ;
6 if t1 ∈ P then P ′ ← P ′\t1;
7 l′ ← |P ′|;
8 if t2 < x[l′] then P ′ ← P ′ ] { t2 }, l′ ← l′ + 1;
9 if cov(P\t1) < τ + 1 then

10 if cov(P ′) = τ + 1 then
11 while tail(P ′) are non-covering tokens do
12 P ′ ← P ′\tail(P ′);
13 if t1 6= t2 then
14 Sc ← signatures generated from P ;
15 So ← signatures composed of t2 and tokens in P ′;

16 else
17 ∆l← min{ δ | cov(x′[l′ + 1 . . l′ + δ]) = 1 };
18 ∆P ← x′[l′ + 1 . . l′ + ∆l];
19 P ′ ← P ′ ]∆P ;
20 if ∆P 6= { t1 } then
21 Sc ← signatures generated from P and containing

t1;
22 So ← signatures composed of any token in ∆P and

those in P ′;

23 else
24 if cov(P ′) > τ + 1 then
25 ∆l← min{ δ | cov(x′[l′ − δ . . l′]) = 1 };
26 ∆P ← x′[l′ −∆l . . l′];
27 P ′ ← P ′\∆P ;
28 while tail(P ′) are non-covering tokens do
29 P ′ ← P ′\tail(P ′);
30 if ∆P 6= { t2 } then
31 Sc ← signatures generated from P and containing

any token in ∆P ;
32 So ← signatures composed of t2 and tokens in P ′;

33 return (x′, l′, So, Sc)

weights of the tokens in x, i.e.,
∑
t∈x wt(t). Our goal is to

find pair of windows such that the accumulated weights of
their intersection is no less than a threshold; i.e., { 〈x, y〉 |
x v di, di ∈ D, y v q, wt(O(x, y)) ≥ θ }. Given a multiset
of tokens, we define its weighted coverage as the minimum
accumulated weights of the errors required to affect all the
signatures enumerated from these tokens. For ni tokens in
class i, since we need at least ni − i+ 1 errors to affect all the
signatures, the weighted coverage is the sum of the ni − i+ 1
smallest weights among the ni tokens. Lemma 4 also holds for
weighted case. Hence to compute the prefix length of x, we
use Algorithm 1 to sum up the weighted coverage of tokens
until the value reaches wt(x)−θ+ ε, where ε is a small positive
real number. The prefix maintenance algorithm (Algorithm 5)
is also modified by replacing τ + 1 with wt(x)− θ+ ε. We also
modify the verification algorithm to compute the accumulated
weights of intersection.

D. MORE EXPERIMENTS

D.1 Token Universe Partitioning
We evaluate the token universe partitioning by comparing

the greedy partitioning algorithm proposed in Section 5.2 with
the equi-width partitioning. For equi-width partitioning, we
choose the kmax that yields the fastest query processing speed.
The average query processing times with varying τ and w on
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Figure 11: Token Universe Partitioning

Table 3: Precision/Recall on REUTERS and TREC
Algorithm REUTERS

(precision)
REUTERS
(recall)

TREC
(precision)

TREC
(recall)

pkwise (w =
25, τ = 5)

67.6% 86.1% 49.0% 85.7%

pkwise (w =
50, τ = 10)

82.4% 53.5% 91.8% 57.1%

FBW (w =
25, τ = 5)

81.5% 51.5% 75.5% 64.3%

FBW (w =
50, τ = 10)

97.5% 10.0% 87.9% 28.6%

REUTERS are shown in Figures 11(a) – 11(b). The query
processing with the greedy partitioning is always faster than
the equi-width partitioning. The speedup varies from 2.0 to
4.7 times, and the gap is more significant when w is small.

D.2 Quality of Local Similarity Search
We evaluate the quality of local similarity search by running

pkwise and FBW with two parameter settings: (1) w = 25
and τ = 5, and (2) w = 50 and τ = 10. Adapt and Faerie are
also exact algorithms, and thus they have the same precision
and recall as pkwise.

To label the ground truth (plagiarism or text reuse) in
REUTERS and TREC, we first retrieve a set of candidate
document pairs that share at least ten consecutive tokens.
Afterwards the candidates pairs are manually checked by
our volunteers. The ground truth in PAN has already been
included in the dataset.

The ground truth pair is in the form of 〈d[u, v], q[u′, v′]〉,
meaning that the text segment from the u′-th to the v′-the
token of the query q is a plagiarism or reuse of the text
segment from the u-th to the v-the token of a data docu-
ment d. A ground truth pair 〈d[u, v], q[u′, v′]〉 is regarded
as identified, if there exists a result pair of local similar-
ity search 〈W (d′, i),W (q′, j)〉, such that d = d′, q = q′,
[i, i+ w − 1] ∩ [u, v] 6= ∅, and [j, j + w − 1] ∩ [u′, v′] 6= ∅; i.e.,
the result pair overlaps the region of the ground truth pair in
both the data and the query documents. The recall is defined
as the percentage of identified ground truth pairs. To measure
precision, we say a token q[i] in the query is positive if it is
covered by a result pair of local similarity search. It is a true
positive if it is covered by an identified ground truth pair. The
precision is defined as the ratio between the numbers of true
positives and all positives, i.e., the percentage of correctly
identified text length.

Table 3 shows the precision and recall on REUTERS and
TREC. Using the setting w = 25 and τ = 5 yields lower
precision but much higher recall than w = 50 and τ = 10. The
recall of pkwise can be up to around 86% on both datasets.
Although FBW has higher precision, its recall is rather low,
missing at least half true results on REUTERS and one third
on TREC.
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For a fair comparison of precision on PAN, we use entire
suspicious documents as queries (on average 16K tokens per
query). There are four types of plagiarism in PAN: artificial
plagiarism generated by a computer program with no, low, or
high obfuscation, and simulated plagiarism purposefully made
by a human. We plot the precisions of four plagiarism types
with the two parameter settings in Figures 12(a) – 12(b), and
the recalls in Figures 12(c) – 12(d). The following observations
are observed:
• The precisions are similar when using two different parameter

settings. Both algorithms exhibit high precision on artificial
plagiarism. We notice that the precision on plagiarism
without obfuscation is lower than that with obfuscation.
The reason is that without obfuscation the plagiarism exactly
matches original text, while the windows within τ tokens
left or right to the plagiarized text are also identified due to
the errors allowed in the parameter settings. On simulated
plagiarism, pkwise’s precision is up to 50%, and it is better
than FBW.
• Using the setting w = 25 and τ = 5 achieves higher recall,

especially for simulated plagiarism. The recall can be 100%
for all types of artificial plagiarism and 91% for simulated
plagiarism. pkwise exhibits higher recall than FBW (by
up to 59%), especially for simulated and highly obfuscated
artificial plagiarism. To see why FBW does not perform well
for these two types of plagiarism, we notice that in these
two types of plagiarism, there are uncommon wording and
grammatical errors (e.g., “had make”) whose frequencies
are zero in the data documents. Since FBW selects least
frequent q-grams as signatures, the q-grams containing these
errors are chosen, and this will make the plagiarism missed
by FBW.
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Figure 12: Precision/Recall on PAN

We note that the precisions (but not recalls) of the pkwise
algorithm can be further enhanced by post-processing methods,
e.g., machine learning-based and natural language processing-
based techniques. In consequence, we suggest users choose
w = 25 and τ = 5.
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