Efficient Exact Edit Similarity
Query Processing with the Asymmetric Signature Scheme

Jianbin Qint Wei Wangf

Yifei Luf

Chuan Xiaot Xuemin Linf*

TSchool of Computer Science and Engineering, University of New South Wales
{igin, weiw, yifeil, chuanx, Ixue}@ cse.unsw.edu.au

i Software College, East Normal China University

ABSTRACT

Given a query string @, an edit similarity search finds all
strings in a database whose edit distance with @ is no more
than a given threshold 7. Most existing method answering
edit similarity queries rely on a signature scheme to gener-
ate candidates given the query string. We observe that the
number of signatures generated by existing methods is far
greater than the lower bound, and this results in high query
time and index space complexities.

In this paper, we show that the minimum signature size
lower bound is 74+ 1. We then propose asymmetric signature
schemes that achieve this lower bound. We develop efficient
query processing algorithms based on the new scheme. Sev-
eral dynamic programming-based candidate pruning meth-
ods are also developed to further speed up the performance.
We have conducted a comprehensive experimental study in-
volving nine state-of-the-art algorithms. The experiment
results clearly demonstrate the efficiency of our methods.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems— Textual Databases;

F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems— Pattern Match-

ing

General Terms

Algorithms, Performance

Keywords

Approximate Pattern Matching, Similarity Search, Similar-
ity Join, Edit Distance, g-gram

1. INTRODUCTION

Given a query string Q, an edit similarity search finds all
strings in a database whose edit distance with @ is less than
a given threshold 7. Edit similarity searches have many
applications, such as data integration and record linkage,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’11, June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

1033

bioinformatics, pattern recognition, and multimedia infor-
mation retrieval. For example,

e In bioinformatics, edit similarity search can be employed
to find similar protein sequences, and tandem repeats,
which are useful to predicting diseases or designing new
drugs [19, 27].

e Batch edit similarity searches, or edit similarity joins,
can be used to find near duplicate records in a customer
database [2], or near duplicate documents in a document
repository [13].

As a result, there has been much interest in efficient algo-
rithms to answer edit similarity search or join queries. This
is an challenging problem, as edit distance computation is
costly and a naive algorithm that performs edit distance
calculation for each string in the database is prohibitively
expensive for large databases.

To address the performance challenge, most existing ap-
proaches adopt the filter-and-verification paradigm based
on a signature scheme. A candidate set is generated for
the query string by finding database strings that share at
least a certain amount of common signatures with the query.
Query results can be obtained by verifying the edit distance
between each candidate and the query.

The numbers of signatures a method generates for data
and query strings have a substantial impact on the query
performance and index size. We give the numbers of signa-
tures for data strings and the query string of several existing
approaches in Table[I] Among them, Ed-Join has the small-
est signature size with respect to 7. It is natural to wonder
if this is the minimum signature size, and if not, how we can
further reduce the signature size.

This paper presents our findings when trying to answer
these two questions. First, we propose a framework of sig-
nature schemes and the associated query processing method
for edit similarity queries. The framework encompasses all
major signature-based algorithms for edit similarity queries.
We prove that the lower bound on the minimum signature
size for any algorithm in this framework is 7 + 1, where 7
is the edit distance threshold. Next, we propose a novel sig-
nature scheme and corresponding query processing methods
for edit similarity queries. Our proposal has three distinct
features: (a) its minimum signature size is exactly 7 + 1,
hence reaching the lower bound; (b) it is an asymmetric sig-
nature scheme — by asymmetric, we mean it uses different
methods to generate signatures for data and query strings;
(c) being asymmetric, we can instantiate two different edit
similarity query processing algorithms out of it. Our two
methods not only have interesting theoretic properties, but

are also highly efficient in practice. We also develop several
candidate pruning techniques that further reduce the num-
ber of candidates needing verification. Finally, we perform a
comprehensive experimental study comparing our two algo-
rithms with nine state-of-the-art algorithms. Our algorithms
demonstrate superior performance in most settings.

Our contributions can be summarized as:

We are the first to introduce a general framework to cap-
ture the commonalities of many existing algorithms that
are based on various kinds of signatures. We also show
the lower bound of 7 + 1 for any algorithm belonging to
this framework.

We propose an asymmetric signature scheme that achieves
the lower bound of the number of signatures on the data
string or the query string.

We design two efficient edit similarity query algorithms,
IndexChunk and IndexGram, together with several novel
candidate pruning algorithms.

Although many algorithms have been proposed in the past
decades on edit similarity queries, to the best of our knowl-
edge, there is no systematic study of their performances.
Hence, we conduct a comprehensive experimental study
with seven state-of-the-art algorithms for edit similarity
queries. Our proposed algorithms have been shown to out-
perform existing ones in terms of speed, index size, and
robustness. The study also provides a clear picture of the
relative performance and space-time tradeoffs of different
algorithms.

The rest of the paper is organized as follows: Section
gives the problem definition and introduces related work.
We describe the general framework that summarizes many
signature-based edit similarity query algorithms in Section[3l
We present an asymmetric signature scheme and show how
to use it for edit similarity searches in Sectiondl We propose
several novel candidate pruning methods in Section Bl Ex-
perimental results are presented and analyzed in Section
Section [concludes the paper.

Note that we focus on solving the edit similarity queries
ezxactly in this paper, thus excluding approximate or heuris-
tic methods (e.g., Shingling [5], LSH [14], or BLAST [1]).

2. PROBLEM DEFINITION AND RELATED
WORK

2.1 Problem Definition

Let X be a finite alphabet of symbols; each symbol is also
called a character. A string S is an ordered array of symbols
drawn from 3. All subscripts start from 1. The length of
string S is denoted as |S|. Each string S is also assigned an
identifier S.id.

ed(S,T) denotes the edit distance between strings S and
T, which measures the minimum number of edit operations
(insertion, deletion, and substitution) to transform S to T'
(and vice versa). It can be computed in O(|S||T|) time and
O(min(|S], |T)) space using the standard dynamic program-
ming [31].

Given a set of strings S and a query string Q, an edit sim-
larity selection with threshold 7 returns all strings S € S
such that ed(S, Q) < 7 [15]. Many selection queries running
in a batch mode result in the edit similarity join problem [7].
In this paper, we call edit similarity selections and joins col-
lectively as edit similarity queries.

1034

2.2 Prior Work

In the interest of space, we briefly survey prior work that
is directly related to edit similarity query. We refer readers
to the survey [23] and the recent tutorial [I8] for a more
complete coverage.

Similarity searches and joins have been studied for differ-
ent representations of objects and similarity/distance func-
tions. In spatial databases where objects are points in d-
dimensional space, a similarity search using the Euclidean
distance is just a range search and can be efficiently sup-
ported by R-trees [I7] in low dimensional space and var-
ious specialized index data structures in high dimensional
space [37]. Euclidean distance spatial joins in high dimen-
sional space have been studied in [20].

Similarity searches in a metric space is hard and generally
requires a metric index, such as M-tree [10]. Metric similar-
ity joins based on the triangle inequality pruning and metric
indexes have been proposed [11} [12].

Recently much work has been devoted to similarity searches
and joins for sets and strings, including constraints defined
using the overlap, Jaccard, cosine, and edit distance met-
rics [I5] 26] [7, [3]. Most recently, even more complex similar-
ity metrics are studied, such as the Bregman Divergence [39]
and Earth Mover’s Distance [35].

When edit similarity queries are considered, existing meth-
ods can be classified into three categories:

e Gram-based. Traditionally, fixed length g-grams are widely
used for edit similarity search or join queries, because the

count filtering is very effective in pruning candidates [15].

Together with prefix-filtering [7], the count filtering can

also be implemented efficiently. Filters based on mis-

matching ¢-grams are proposed to further speed up the

query processing [34]. Variable-length grams are also pro-

posed [22], [36], which can be easily integrated into other

algorithms and help to achieve better performance. Sev-

eral list-merging methods were proposed by [21] to im-

prove merge efficiency by skipping elements when probing

inverted lists.

Tree-based. A trie-based approach for edit similarity search
has been proposed in [§]. It builds a trie for the dataset

and support edit similarity search by incrementally prob-

ing the trie. [32] introduces a trie-based method to sup-

port edit similarity joins efficiently via sub-trie pruning

techniques. [38] proposes a BT -tree index structure B®%-

tree to support edit similarity queries through transform-

ing strings into implicit digits and inserting them into a

standard BT -tree.

FEnumeration-based. Neighborhood generation-based meth-
ods enumerate all possible strings that are within 7 edit

distance from data strings. While naive enumeration method
only works in theory, recent proposals using deletion neigh-
bourhood [29] and partitioning [33] can work well with
small edit distance thresholds. PartEnum [2] performs enu-
meration based on partitions of the alphabet ¥ and the
strings.

Our proposed methods generally belongs to the gram-
based approach. However, unlike all existing methods, our
scheme uses different methods to extract (different) signa-
tures from data strings and the query string. Another dif-
ferences is in the number of signatures generated for query
processing purpose. Our methods attain the lower bound
on the minimum signature size. Nonetheless, we compared

our proposed methods with representative methods from all
three categories in our experiment (Section [6).

Similarity searches or joins are usually much more costly
than equality searches or joins. Even the latest exact simi-
larity computation algorithms might be insufficient for huge
amount of data or in applications with stringent time re-
quirement. Therefore, another rich body of related work is
to answer similarity queries approximately. The most influ-
ential work is those based on LSH [I4] 4] [6]. There are also
approximate methods based on heuristics [9) [30] or hash-
ing [28].

We note that several works [24] 25] have used a similar
idea to the IndexGram algorithm, namely, the query string is
divided into multiple substrings and each substring is used
to probe an index. The major differences are (1) we fixed
the length of substring to ¢ while they fix the number of sub-
strings to 7 + 1, (2) thanks to prefix-filtering, our method
only needs to process rare substrings, (3) we have better
filtering algorithms to further remove the candidates. We
have shown that IndexGram substantially outperforms these
methods in the experiment (Section [65]).

3. A SIGNATURE-BASED FRAMEWORK
FOR EDIT SIMILARITY QUERIES

In this section, we develop a general framework for exact
edit similarity queries. It encompasses a large number of
existing methods for the problem. We also develop a lower
bound for all schemes belonging to this framework and show
there is a substantial gap between existing methods and the
lower bound. This is exactly the motivation for our asym-
metric signature scheme proposed later in Section [El

In the rest of the paper, we consider edit similarity searches.

In the interest of space, we defer the extension of our tech-
nique to edit similarity joins to the full version of this paper.
Nonetheless, the join version of our methods are used in our
experimental study (Section [G]).

3.1 A Framework Based on Content Signatures

A general idea that underlies many existing solutions to
edit similarity searches is that if two strings are similar by
having a small edit distance between them, then part of them
(called signatures in this paper), must be identical.

In this paper, we confine ourself to signatures that are
part of the string content, hence named content signaturdﬂ.
A typical example is the g-gram, which is a substring of
length gq. More formally, consider a string S, a content sig-
nature is one of its non-empty subsequences. Different signa-
ture scheme admits different set of signatures by imposing
certain restrictions. All possible signatures admitted by a
signature scheme is called its signature space.

This above signature-based idea for edit similarity searches
naturally suggests the following query processing method:
given a query string), we can extract a signature from @,
and then find data strings that also generate the same sig-
nature (typically via an inverted index). It is obvious that
this will immediately give us a candidate set with possible
false positive results. Nonetheless, we can perform a pair-
wise verification between each candidate and the query to
remove false positives and obtain the query answer.

However, the above idea is flawed for ezact edit similar-
ity searches, if only one signature is generated for the query

"When there is no ambiguity, we will simply refer content
signatures as signatures.

1035

or the data string. This is because given a pair of strings
@ and S and their signatures, the two strings might differ
exactly by one edit operation that destroys the signature.
In order to guarantee that all query results are returned, we
only consider signature schemes such that

e it extracts A, signatures for a data string;

e it extracts A, signatures for a query string;

the scheme has a tight lower bound, LB, of common sig-
natures for any two strings within an edit distance thresh-
old.

Hence, a signature scheme suitable for exact edit similar-
ity searches can be characterized as I'(\-, A, LB;).

The above is the framework we propose. It encompasses
many of the existing methods for edit similarity queries, in-
cluding ¢g-grams [15], VGRAMs [22], and signatures gener-
ated by enumeration [2} [33].

EXAMPLE 1. A g-grams is a fized length substring ex-
tracted from a given string. The gq-gram-based signature
scheme imposes the restriction that the signature length must
be q. Let the alphabet be X, the signature space of q-grams is
9. It was shown that if two strings are within edit distance
T, the intersection size of their q-grams sets must exceed a
certain lower bound [16)]. Hence, the method can be charac-

terized as F(|S‘7 |Q|v ma'X(|S‘7 |Q|) - qT)'

3.2 Minimum Signature Size

We define the minimum signature size of a signature scheme
I’ as min(A-, A;). Since the number of signatures is closely
related to (1) the size of the index we need to build, and (2)
the query performance of the method, we would like to find
a signature scheme that minimizes this number. We first
introduce the prefix filtering as a powerful reduction tool.

Prefix Filtering. Given a set U and a global ordering
O for all elements in the universe, the 0-prefix of the set U,
denoted as O-prefix(U), is the first 6 elements of U when all
elements in U is sorted according to O.

THEOREM 1 (PREFIX FILTERING, LEMMA 1 IN [7]).
Consider two sets U and V' sorted according to a global or-
der O. If [UNV| > 6 (6 < min(|U|,|V])), then (JU| — 6 +
D)-prefie(U) N ([V| = 0 + 1)-prefin(V') # 0.

Together with prefix filtering, the following lemma gives
us a means to reducing the number of signatures if the lower
bound required in the scheme is larger than 1. Therefore, in
order to reduce the lower bound on the minimum signature
size of any signature scheme in our framework, we only need
to consider those schemes with lower bound of 1.

LEMMA 1. Given a signature scheme I'(\-, A+, LB;) for
exact edit similarity searches, there exists a signature scheme
(A — LB: + 1,A; — LB, + 1,1) such that for any query
Q, all candidates produced by I" is a subset of candidates
produced by I,

PROOF (SKETCH). We can explicitly construct the new
signature scheme I as follows:

e define an arbitrary total order for all signatures in the
signature space of I

e given the A\, signatures generated by I' for a data string
S, we only keep its \; — LB, + 1-prefix as the signature
of T’ for S.

Table 1: Worst Case Signature Sizes of Existing Edit Similarity Search/Join Methods

Method A(7) Signatures for Data (5) A(T) Signatures for Query (Q) Lower Bound

g-gram [21 | |S] g-grams () Q| g-grams max(|5]. |Q) - g~

Ed-Join [34] qT + 1 g-grams qT + 1 g-grams 1

VGRAM ® 1S 4 gmin — 1 VGRAMSs |Q| + gmin — 1 VGRAMSs max(|[VG(S)| — NAG(S,7),|[VG(Q)| —

NAG(Q, 7)) or by dynamic programming

O(72 - 1,,) variants

NGPP [33]

O(72 - 1,,) variants

1

PartEnum [2] O((q7)%3°) signatures

0((q7)%3?) signatures

1

(@) Strings are padded with special characters at the end. ®)

@min is the minimum VGRAM length; VG(X) is the number of

VGRAMs generated for X; NAG(X, 7) is a pre-calculated number.

e given the A, signatures generated by I' for a query string
Q, we only keep its A, — LB, + 1-prefix as the signature
of I for Q.

According to Theorem[I] all candidates generated by I with
lower bound LB are contained in the candidates generated
by I with lower bound of 1. [J

Finally, for all signature schemes admitted by our frame-
work, we have the following lower bound on its minimum
signature size.

THEOREM 2
The minimum signature size of any scheme in our frame-
work is at least T+ 1, provided that the size of the signature
space is at least 27 + 1.

PROOF (SKETCH). We prove the lower bound by contra-
diction. Assume there exists a signature scheme that ex-
tracts at most 7 signatures from a string S (i.e., Ay < 7).
Denote the signatures as sigs(S). Consider an adversary
that constructs a string 7" in the following manner: it con-
siders each signature and uses one edit operation to change
it to another signature which is not in sigs(S). This is pos-
sible because the possible number of distinct signatures is
more than 27. Then the edit distance between S and the
resulting string 7" is at most 7. However, since all the signa-
tures of S are “destroyed”, S would not be retrieved if T is
used as the query string. Therefore, this signature scheme
cannot answer exact edit similarity queries. By symmetry,
we can prove that there is no signature scheme that extract
less than 7 + 1 signatures for the query string too. [l

We summarize the minimum signature size for existing
signature schemes in Table[Il As we can see from the table,
the signature sizes of existing schemes are far from the lower
bound 7+ 1. It is natural to ask whether there exists a con-
tent signature scheme for exact edit similarity queries that
has minimum signature size of T + 1. In the next section,
we show that this can be achieved by a novel asymmetric
signature scheme.

4. g¢-chars: AN ASYMMETRIC SIGNATURE

SCHEME

In this section, we propose an asymmetric signature scheme
for edit similarity searches with threshold 7. By incorporat-
ing prefix filtering, we arrive at two new signature schemes
that generate (and index) only 7 + 1 signatures for data
strings or the query string, respectively.

(LOWER BOUND OF MIN. SIGNATURE SIZE).

1036

4.1 ¢-chars-based Signature Scheme

We propose an asymmetric scheme for similarity searches
and joins with an edit distance constraint. The idea is to
extract g-grams from one string as signatures and extract
g-chunks from another string as signatures. g¢-chunks are
just substrings of length ¢ that starts at 1 4 i - ¢ positions
in the string. In other words, all g-chunks of a string S, or
g-chunk set (denoted as ¢q(5)), form a disjoint yet complete
partitioning of S. To make sure the last g-chunk has exactly
q characters, we append ¢ — (|S| mod ¢) special character
$ to the end of S.

The g-gram set of a string S is its all length g substrings.
In order to make sure every character in S has a correspond-
ing g-gram, we pad q — 1 special characters $ to the end of
S. The collection of g-grams generated for S is called its
g-gram set, and is denoted as gq(S).

We call both g-gram and g¢-chunk signatures g-chars if
there is no need to distinguish between them. Note that if
two signatures are literally identical, we still treat them as
two different signatures, as they come from different posi-
tions in the string [7].

the 58 5 [a[e[] [s[n]s[s]
R
"
grams
query [n[s[s]
string: 0
anats o [a[o]c) N (TS

Figure 1: The ¢-chars Signature Scheme Example
(a=3)

EXAMPLE 2. Consider the example in Figure[dl The data
string S differs from the query string Q by deleting the char-
acter c. Note that we deliberately added spaces between char-
acters in the strings and S’s first two 3-grams, for the ease
of illustration only.

Now consider the three 3-chunks of Q. Note that these
three 3-chunks can be deemed as a sample of 3-grams of Q.
If there is no edit operation from @ to S, each of them will
have a match in S’s 3-gram set. Since in fact there is a dele-
tion within the range of the first 3-chunk, its corresponding
3-gram in S will be destroyed. However, since there is no
edit operation within the ranges of the rest of the 3-chunks,

their corresponding 3-grams are still preserved (albeit their
offset in S might change).

Since Q) has three q-chunks, it is obvious that any string
S within edit distance of 1 from Q will preserve 3-1=2 q-
chunks of Q. This is exactly the lower bound of one of our
g-chars-based signature schemes (or more specifically, the
basic IndexGram method).

The following theorem formally gives the lower bound for
the g-chars-based signature scheme.

THEOREM 3
Let S and @ be two strings such that ed(S,Q) < 7. Then
both of the following inequalities hold:

l9q(S) Neq (@) > [1Q1/q]l —T (for basic IndexGram)
leg(S) M ge(Q)] = [IS]/q] — T (for basic IndexChunk)

PRrROOF. We prove the first inequality and the second holds
by symmetry. We say two signatures match if they are lit-
erally identical.

Let k = [|Q|/q], where k is a constant and is the number
of g-chunks for). Consider applying the edit operations
from @ to S step by step. Before applying any edit op-
eration, all k g-chunks have matching g-grams. Based on
the position of each subsequent edit operation, we assign it
to one of the g-chunks. For substitution, it is the g-chunk
the modified character belongs to. For insertion, it is the
g-chunk that the character preceding the inserted character
belongs to. For deletion, it is the g-chunk that the deleted
character belongs to. Hence, by the pigeon hole principle,
with at most 7 edit operations, there are at least k — 7 ¢-
chunks that have matching ¢-grams from S. [

We can further strengthen Theorem [by attaching the
position information to each signature (i.e., g-grams or g-
chunks). The position of a signature is the position of its
first character in the string. We define two positional signa-
tures, u and v, to be matching (with respect to 7), if and
only if u.sig = v.sig and |u.pos — v.pos| < 7. Lemma
extends the lower bounds to positional signatures.

LEMMA 2. Theorem [3 still holds when all signatures are
positional signatures and the equality test between two sig-
natures is replaced with matching test between two positional
stgnatures.

4.2 IndexChunk and IndexGram

There are two ways to apply the asymmetric g-chars sig-
nature scheme to edit similarity searches. Let a string in
the dataset be S and the query string be . One way is to
extract and index g-grams for all S in the database, and use
g-chunks of @ as Q’s signatures (as shown in Example [2)).
We call this method basic IndexGram. Another way is to
extract and index g-chunks for strings in the database and
use g-grams for the query string. This method is called basic
IndexChunk.

Theorem [3 essentially gives us the count filter for g-chars-
based signature scheme. In the same spirit as Lemma [T}
by incorporating the prefix filtering, we can obtain a new
signature scheme that generates fewer signatures.

For basic IndexGram, the lower bound of common sig-
natures is [|Q|/q] — 7. As the number of g-grams gener-
ated for S is |S|, the prefixes for the data strings should
be its first |S| — ([|Q|/q] — 7) + 1 g-grams; since |Q| >

(LOWER BOUND OF COMMON SIGNATURES).

|S| =7 (due to the length filtering), the prefixes are the first
S| = ([(|S| —71)/q] — 7) + 1 g-grams. The number of g-
chunks generated for @ is [|Q|/q], and the prefix for the
query string is its first [|Q|/¢] — ([I1Q|/q] —T7)+1=7+1
g-chunks. We call this method IndexGram.

Similarly, we can derive that the prefix lengths for data
strings in IndexChunk is 7+ 1, while the prefix length for the
query string is |Q| — ([(|Q] — r)/q] —) + L.

Both IndexGram and IndexChunk have minimum signature
size as 7 + 1. Hence both schemes are optimal according
to Theorem We list the detailed signature sizes for our
algorithms in Table

Algorithm 1: Preprocess+Index (S, 7, O)

Data: S is the set of strings
to be indexed. O is a global ordering of signatures.

1 for each string S € S do
2 sigs < the signature set of string S;
3 prefir_sigs
the first A; signatures from sigs ordered by O;
4 for each signature sig € prefixz_sigs do
5 | I[sig] < I[sig] U (S.id, S.pos);
4.3 Query Preprocessing Algorithm
Preprocessing. In the preprocessing phase, we convert

each data string into its corresponding signature set. Since
we employ prefix filtering in both of our methods, an ap-
propriate subset of signatures are further indexed using the
inverted file. This process is illustrated in Algorithm [Il

The inverted index maps a g-chars signature into a list
of strings such that the g¢-chars signature is among their
prefix signatures. Each entry in the posting list consists of
(id, pos), where id is the string ID, and pos is the starting
position of the signature in the string id.

Algorithm 2: EditSimilarityQuery (R, T)

Data: Q@ is the query string; [is an inverted index.
1 sigs < signatures of Q;
2 prefix_sigs < the first A, signatures of sigs;
3 candidates < (;
4 for each signature sig € prefix_sigs do

5 for each S € I[sig] do
6 if S.id ¢ candidates
and |S.len — |Q|| < 7 and |S.pos — sig.pos| < T then
7 | candidates < candidates U {S.id};
8 for each candidate string S € candidates do
9 if 2ndPhaseFilter(S, Q, 7, LB(S, Q)) then
10 if Verify(Q, S, 7) then
11 | output S;

1037

Answering Queries. We illustrate the edit similarity
search algorithm in Algorithm The algorithm has two
phases.

e In the first candidate generation phase (Lines 1-7), it gen-
erates signatures for) and use the appropriate prefix
signatures to probe the index and generate candidates.
For each candidate S returned from the inverted index
probing, we apply length filtering and position filtering in
Line 6.

The second phase is in Lines 8-11. We apply a second
phase filtering to each candidate to further reduce the
number of candidates that have to be verified by the costly

Table 2: Worst Case Signature Sizes of ¢-chars-based Methods

|| Method A(7) Signatures for Data (S)

A(7) Signatures for Query (Q)

Lower Bound

Basic IndexChunk [1S1/4] g-chunks

|Ql g-grams

[sl/q1 =~

IndexChunk 7 4+ 1 g-chunks Q= ([(|Q|=7)/q]l —7)+1 g-grams | 1
Basic IndexGram |S| g-grams [1Q|/4] g-chunks Nel/ql —r
IndexGram S| = ([(|S]|—=7)/q] —7)+1 g-grams | 7+ 1 g-chunks 1

(b) Inverted Index for 2-
chunks (7 = 1)

s, aaghefi

(a) Data Strings (with 2-chunks)
and the Query (with 2-grams)

Figure 2: IndexChunk Example

edit distance calculation (Line 10). We defer the discus-
sion of the detail to Section[5l For now, we can think of a
basic count filtering is applied here. If a candidate string
passes the second phase filtering, its edit distance with @
is calculated and compared with the threshold in Line 10.

ExXAMPLE 3. Consider running the IndexChunk method on
data and query strings in Figure[d We consider ¢ = 2 and
T=1. Figure shows the 2-chunks and 2-grams.

The lower bounds calculated for each S; according to The-
orem[3 are 3, 2, 2, respectively. If we naively intersect Q’s
2-gram set with S;’s 2-chunk set, we obtain the intersection
sizes as 1, 2, 2, respectively. However, if we use positional
2-grams and 2-chunks, the intersection sizes will be 1, 2, 0.

Now consider using prefiz filtering in the IndexChunk method.
We will just use the dictionary order as the global order O,
e.g., ab < cd. Since the prefix length for all strings are just
T4+ 1 =2, we only need to index the prefix 2-chunks (cells
with yellow background). The inverted index built for the
prefiz is shown in Figure

Given query’s 2-grams, we only uses its prefix signatures,
which is the first 5 signatures (marked as red cells) according
to O. Probing these prefix signatures against the inverted in-
dezx will give us candidate {S2} for cd and {S1} for ef. Note
that although Ss is in ab’s posting list, since the two signa-
tures’ positions are more than 1 position away, Ss is not
added to the candidate set. The same holds for the S3 entry
in cd’s posting list.

5. ADVANCED FILTERING

In this section, we consider several alternative ways to
implement the second-phase filtering. We first introduce
the naive count filtering method and illustrate its tendency
to over-estimate the matches. We then propose a dynamic
programming-based algorithm that computes the maximum
number of true matches and use it for more effective count
filtering. We also design another dynamic programming-
based algorithm that performs filtering directly by estimat-
ing the lower bound of the edit distance for a candidate pair.

5.1 Naive Count Filtering

Line 9 of Algorithm [2] calls the function 2ndPhaseFilter to
calculate the number of signatures shared by the data string
and the query string. The naive way to implement this func-
tion is given in Algorithm B It first loads the signatures of

Algorithm 3: NaiveCountFilter (Q, S, 7)

1 Load the signatures of @Q and S ; /* both are sorted */
2 g_sigs < the g-gram signatures;
3 c_sigs < the g-chunk signatures;
4 mismatch < 0; M «+ (;
5 LB < the corresponding lower bound;
6 for each g-chunk signature chunk € c_sigs do
7 match + BinarySearch(g_sigs, chunk);
8 if match = nil then
9 mismatch < mismatch + 1;
10 if mismatch > |c_sigs| — LB then
11 | return (false,()
12 else
13 while match # nil and
match = chunk and |chunk.pos — match.pos| < 7 do
14 M + M U (chunk, match);
15 match < next(match)
; /* move to the next g-gram signature */

16 f < |M|> LB;
17 return (f, M)

@ and S and counts the number of common signatures. In
both g-chars-based methods, the signatures are a large set
of g-grams and a small set of g-chunks. Given the difference
in their sizes, we always iterate over the g-chunks, probing
the longer g-grams to find a match. The criteria to decide a
match are (1) the signatures have the same string content,
and (2) their positions are within 7 from each other (Line
13). Since the signatures are both sorted first by their global
order and then their positions in the string, we can use bi-
nary search (Line 7). It is possible that the same g¢-gram
appear multiple times in a string, hence we need to collect
all such matches (Lines 13-15). Overall, the algorithm has
a time complexity of O(% -log |Q))-

An optimization we injected into the algorithm is to keep
track of the number of ¢-chunks that are not matched so
far (in the variable mismatch). If the mismatch number is
larger than total number of g-chunks less the lower bound,
we can immediately prune the candidate pair (Lines 9-11).

5.2 Finding True Matches

Algorithm [B] returns M — a list of matches. As will be
explained shortly, not all of them could be valid matches,
hence we call them candidate matches.

We can model M as a bipartite graph (U UV, E) as fol-
lows: for each match between a g-chunk ¢ and a g-gram g,
we create two nodes U. and V,; and an edge between them.

ExAMPLE 4. Consider the IndexGram method with q = 2,
and the data string S and the query string Q in Figure[3.
There are 5 candidate matches, as marked by 5 edges be-
tween the respective 2-grams (green rectangles) and 2-chunks
(green eclipse).

Algorithm Blsimply compare the size of candidate matches

1038

S: HHEIHI!

all of S's
2-grams :

allof O's
2-chunks :

0:

ity
[b]clcfd]alo]c]d]

Figure 3: Illustrating Candidate Matches for
Example B (7 = 2)

with the lower bound to determine if the current candi-
date pair needs to be further verified or not (See Algo-
rithm P]). This may admit false positives because two candi-
date matches might “conflict” with each other and only one
of them is a true match. We use the following example to
illustrate three types of conflicts.

EXAMPLE 5. Consider the same example in Figure[d Al-
gorithm [3 will return 5 candidate matches as marked by yel-
low nodes (denoted as M[i]). We consider the following three
types of conflicts

Multiple Matching (MM): edges M[2] and M[3] both
stem from the 2nd chunk of Q.

Overlapping Matching (OM): edges M[1] and M[2] in-
dicates that the first two chunks of Q are mapped to two
overlapping bi-grams of S.

Cross Matching (CM): edges M[4] and M|[5] cross each
other.

It can be shown, in any of the above three cases, that at most
one of the (two) candidate matches is a true match. Without
imposing the three constraints above, S and Q will be recog-
nized as a valid candidate pair for any T as all four q-chunks
of Q have matches. However, we can compute the mazximum
number of matches respecting the three constraints as three
(edges ML), M3, M[4]).

The following theorem further improves Lemma 2] by im-
posing the constraint to rule out any instance of MM, OM,
or CM.

THEOREM 4. LemmalZ still holds with the constraint that

no two of the matches of positional signatures belong to MM,
OM, or CM.

By removing the least number of the candidate matches, a
set of candidate matches that does not observe the constraint
can be made to be conflict-free and become true matches.
We can return the number of true matches to perform count
filtering.

Now the algorithmic problem is how to remove the least
number of edges in the bipartite graph such that the resul-
tant graph does not violate the constraint. This is essentially
a specially constrained version of graph matching. Note that
approximate solutions stemmed from unconstrained maxi-
mum graph matching cannot be used to prune candidate
pairs.

Hence, we design the following dynamic programming-
based algorithm to calculate the maximum matching num-
ber while observing the constraint. Let opt[i] records the
maximum number of true matches if the i-th edge in the
candidate match list M is a true match and no more true
matches after ¢. In order to calculate opt[i], we need to find

1039

the last edge (M]j]) before the current one (M|i]), that is
a true match. Once such an M[j] is found, opt[i] should be
optj]+1. A straight-forward formulation would consider all
preceding matches, i.e., 1 < j < i. However, since we have
the lower bound (LB) on the number of g-chunks (hence
the number of edges) that must be matched, we only need
to consider ! preceding edges, where | = |M|— LB+ 1. This
is because if the last true match edge is even before M[i —1],
there will be at most LB — 1 edges that are matched, hence
the candidate pair cannot satisfy the lower bound and should
be discarded.

We also need to consider if the current edge and the last
true match edge violate any of the three constraints. We
say the two edges are compatible if they do not. We use a
binary decision function d(e;, e;) to encode this test, where
d(es,ej) = 1iff e; and e; are compatible, and 0 otherwise.
Given an edge e, denote its two vertices as e.gram and
e.chunk, respectively. Two edges e; and e; (i < j) are com-
patible if e;.chunk # e;.chunk and e;j.gram > e;.gram + q.
The first test rules out MM and the second test rules out
OM and CM (since e;.chunk < e;j.chunk).

Therefore, the final recursive formuld? is:

The recursive formula can be easily transformed into an
efficient dynamic programming algorithm by filling the opt[i]
values with ¢ ranging from 1 to |M|. The overall maximum
number of true matches can be found from the last [ele-

ments of opt. If this number is less than LB, we could safely
rule out this candidate pair.

|M|—LB+1

optlk] = max,_|
=0

opt[0]

{6(M|k], Mk —1]) - opt[k —i]} + 1

Algorithm 4: DPTrueMatches (Q, S, 7)

Data: M’ is all the candidate matches
appended with a virtual omni-compatible edge

1 opt[0] + 0;

2 for k=1 to |M| do

3 maxr = —o0;

4 for : =1 to min(k,|M|— LB +1) do

5 if 6(MIk], M[k —1]) and opt[k — i] > maz then
6 | max < optlk —i] + 1;

7 opt[k] < max;

8 return max‘ileB(opt[i])

EXAMPLE 6. Consider the example in Figure[3, the first
five values of the opt array when k =5 is: [0, 1, 1, 2, 3,
To calculate opt[5], we need to consider its |M|—LB+1 =4
preceding edges. Among them, only M[2] and M[1] are com-
patible with M[5]. Hence opt[5] = max(opt[2], opt[1])+1 = 2.
Therefore, the opt array becomes [0, 1, 1, 2, 3, 2]. The

[M| -
(opt[i]) = 3.

final results is max,_; 5

The algorithm has a time complexity of O(|M|(|M]| —
LB)). In most practical cases, since |M| — LB is a small
constant, the algorithm exhibits near linear time complexity.

5.3 Error Estimation-based Filtering

Another way to prune a candidate pair is to estimate a
lower bound of the edit errors.

Assume that we have obtained a set of valid matches. This
immediately gives us an alignment of the two strings. We

2We let M[0] be compatible with all match edges.

develop an efficient method to estimate the minimum edit
errors for this alignment. Our idea is that if we can enu-
merate all possible alignments (and their edit error lower
bounds) involving at least one true matclﬂ, and find the
minimum value of these lower bounds, then it must be a
lower bound of the edit distance (which must use one of the
alignments we have explored). If this lower bound is larger
than 7, the candidate pair can be discarded.

Observing that we only need to compute the minimum
value of the lower bounds of all possible alignments, we pro-
pose a dynamic programming-based algorithm to efficiently
calculate this value, thus saving us from a brute-force enu-
meration.

Estimating Edit Errors. First, we look at how to esti-
mate an error lower bound for a particular alignment.

(I [<]
S ([e[-]-]

The alignment
corresponding
to selecting
edges 1 &5

Figure 4: Illustrating the Error Estimation Method

EXAMPLE 7. Assume we select edges 1 and 5 from Fig-
ure[d as the true matches. This corresponds to an alignment
shown in Figure[J} Consider the portions of strings between
the two mapped edges (bc and cd). On one hand, the edit
error must be at least the difference of these two substrings
(in this example, 4 - 1 = 3). On the other hand, we know
the second and the third q-chunks of Q are not matched,
hence entailing edit distance of at least two. Therefore, the
minimum edit error is finally estimated as max(3,2) = 3.

Hence, we define the function ed_est(e;,e;) (i < j) that
estimates the lower bound of edit distance of two substrings
obtained respectively by slicing edges e; and e; on the data
and query strings as: é ed_est(e;,e;) = max(«,) where

_ ej.chunk.pos—e;.chunk.pos ~ 1 and ﬂ _ |(

7 e;.chunk.pos —
e;.chunk.pos) — (e;.gram.pos — e;.gram.pos)|.

Consider an alignment with k true matching edges, in the
general case, it divides both strings into k 4 1 partitions. It
can be shown that the sum of edit error estimations in each
partition is also a lower bound of the edit distance between
two strings.

Computing the Minimum Value of the Lower Bounds.

Given an edge M[i] as the current edge as a true match, it
aligns g-chunks and ¢-grams to the left of itself. We de-
note the minimum value of lower bounds for such an partial
alignement as opt[i]. We can obtain the following recursive
formula:

|M|-LB+1

opt[k] = min {optlk —i] + ed_est(k —i,i)} (1)

EXAMPLE 8. Consider the example in Figure[d The opt
array when k = 5 is: [0, 1, 1, 2, 2, 1.70 calculate
opt[5], we need to consider its |M| — LB + 1 = 4 preceding
edges. Among them, only M[2] and M|[1] are compatible with

BOtherwise, since the number of g-chunks is at least 7 4+ 1, the
alignment has at least 741 edit errors and hence can be discarded.
4Special cares need to be taken for the first and the last edges.
ed_est(0, e;) estimates errors from the start of two strings to the
edge e;, ed_est(e;,nil) estimates errors from the edge e; to the
end of two strings.

1040

Algorithm 5: DPErrEsti (Q, S, 7)

Data: M is all the candidate matches
appended with a virtual omni-compatible edge

1 opt[0] + 0;

2 for k=1 to |M| do

3 min = oo;

4 for i =1 to min(k,|M|— LB+ 1) do
5 if §(M|k], M|k — 1))

and opt[k — i] + ed_est(k — 4,7) < min then
| min < opt[k —i] 4 ed_est(k — 4,1%);

(=)

7 opt[k] = min;

8 return mianiB(opt[i] + ed_est(M [i], nil))

M][5]. Hence opt[5] = min(opt[2] + ed_est(M[2], M[5]), opt[1]
+ed_est(M]1], M[5])) = 2. Therefore the opt array becomes
[0, 1, 1, 2, 2, 2].The final results is:
M (opt[i] + ed_est(M[i], nil)) = 3.

min;_; 5

We design a dynamic programming-based algorithm to
calculate the lower bound of the edit distance for a candidate
pair (Algorithm [). It is very similar to Algorithm Ml with
the main difference that we calculate the minimum value of
lower bound estimates (according to Equation ({l)) and store
it in the variable min. The minimum estimated edit error is
equal to the match from M[LB] to M[|M]|] whose opt value
plus the error estimation to the end of strings are the small-
est. If this error is over 7, we could prune this candidate pair.

The algorithm has a O(|M|(|M| — LB)) time complexity.

6. EXPERIMENTS

In this section, we report some of the most interesting
findings in our comprehensive experimental study. We com-
pared the performance of our two algorithms with seven
other state-of-the-art methods (using publicly available im-
plementation or implementation from original authors) for
edit similarity queries.

6.1 Experiments Setup

The following algorithms are used in the experiment.

IndexChunk and IndexGram are our proposed algorithms
that extract g-chunks and g-grams as signatures for the
data strings, respectively.

Flamingo [21] is a full-fledged open-source library for ap-
proximate string searches with several different similarity
or distance functiondd. We used the DivideSkipMerger [21]
in its v3.0 release.

PartEnum [2] is an edit similarity search and join method
based on two-level partitioning and enumeration. We used
the implementation in the Flamingo project and enhanced
it to support both similarity searches and joins.

Ed-Join is a ¢g-grams-based edit similarity join algorithm
using two mismatch filters [34]. We modified the source
to support edit similarity searches.

Betree [38] is a recent index structure for edit simi-
larity searches and joins based on BT-trees. It proposed
three different transformations for efficient pruning of can-
didates during its query processing. We obtained the im-
plementation from the authors.

Trie-Join [32] is a recent trie-based edit similarity join
method. We obtained the implementation from the au-
thors.

5http://fla.mingo. ics.uci.edu/

http://flamingo.ics.uci.edu/

Ed-Join —&
B™"-Tree -
Flamingo X

PartEnum
Trie-Join

TndexChunk —>—
IndexGram -3
NGPP e

Edit Distance

(a) IMDB, Preprocessing Time

IndexChunk
IndexGram

Index Size / Data Size

Edit Distance

(d) UNIREF, Relative Index Size

IndexChunk
IndexGram

NGPP
Ed-Join

B™-Tree
Flamingo

Time (ms)

4 8 12 16 20
Edit Distance

(g) TREC, AVG Query Time

IndexChunk
IndexGram

Time (ms)

Time (ms)

Edit Distance

Ed-Join
B Tree

4 8 12
Edit Distance

UNIREF, Join Time

N2

(p

) =4

TndexChunk” —%—
IndexGram --fF--

NGPP -
Ed-Join

101 f h f
4 8 12 16 20
Edit Distance
(b) UNIREF, Preprocessing Time
IndexChunk Ed-Join PantEnum ©
3 IndexGram B®-Tree Trie-Join
10 NGPP : Flamingo
& 10°
£
°
£ 1
£ 10
10°
10"

Edit Distance

(e) IMDB, AVG Query Time

‘ TndexChunk B™-Tree

Time (ms)

Edit Distance

(h) UNIREF, AVG Query Time

Time (ms)

Edit Distance

(k) IMDB, AVG Query Time with Diff. Filters

Edit Distance

(m) TREC, AVG Query Time with Diff. Filters (n) UNIREF, AVG Query Time with Diff. Filters

2
10 IndexChunk j j
IndexGram \V4
NGPP
— 10 Ed-Join - O v J
E B™"-Tree
= Flamingo A4
o
E 10° 4 % 4
g o Q00
2 +
S 5t X O 1
. 5
O
102 . .
1 10 100 1000

Index Size (MB)

(q) DLBP: Space vs. Time

Figure 5: Experiment Results

1041

IndexChunk
IndexGram
NGPP

o
]
2]
£
T
a
B
]
2]
x
3
kel
£

Edit Distance
(c) IMDB, Relative Index Size
10* F IndexChunk Ed-Join PartEnum
IndexGram B Tree Trie-Join
5 NGPP & Flamingo
10° F
@
E
o
£
£
Edit Distance
(f) DBLP, AVG Query Time

IndexChun

IndexGram
@
£
o
E
=
D
£
o
£
=

Edit Distance

(1) DBLP, AVG Query Time with Diff.

Filters

IndexChunk mmm—
IndexGram
NGPP

Ed-Join
B -Tree
Flamingo

Edit Distance

(o) DBLP, Join Time

3
10 IndexChunk j j
IndexGram
pas NGPP
_ Ed-don O
2 B*-Tree
S Flamingo @
£
£
g 100t © ©OCoIIO +++++
s
% o X0 g
10 ¢
O
102 . . .
1 10 100 1000

Index Size (MB)

(r) UNIREF: Space vs. Time

10000

e NGPP [33] is an edit similarity search algorithm origi-
nally developed for the approximate dictionary matching
problem. It is based on a partitioning scheme together
with deletion-neighborhood enumeration. We modify the
source to support edit similarity joins.

e VGRAM [22] [36] is a novel signature extraction algo-
rithm based on variable length grams. As such, it can
be integrated into a variety of similarity search and join
algorithms. We obtained the implementation from the
authors.

e PC and PF [25] are two asymmetric methods for sub-
string approximate matching, where the query string is
always partitioned into 7 4+ 1 disjoint substrings. We ob-
tained the implementation from the authors, and com-
pared them with IndexGram in Section

We selected four publicly available real datasets in the ex-
periment. They cover a wide range of data distributions and
application domains, and are used in previous studies.

e IMDB is an actor name dataset taken from the IMDB
websited.

e DBLP is a snapshot of the bibliography records from the
DBLP websitd]. Each record is a concatenation of author
name(s) and the title of a publication.

e UNIREF is the UniRef90 protein sequence data from
the UniProt projectﬁ Each sequence is an array of amino
acids.

e TREC is from the TREC-9 Filtering Track Collections[]
Each string is a reference from the MEDLINE database
with author, title, and abstract information.

Statistics about the datasets are listed in Table B

Table 3: Statistics of the Datasets
Dataset # of Strings | Avg Length | Size (MB)

IMDB 1,060,981 16 17
DBLP 860,751 106 88
UNIREF 377,438 464 281
TREC 239,580 1228 168

All experiments were carried out on a Quad-Core AMD
Processor 8378@2.4GHz with 96GB RAM. The operating
system is Linux 2.6.32 x86-64. All algorithms with source
codes were coded in C++.

Note that

e We abuse the algorithm names to denote both its edit
similarity search and join versions.

e In the interest of space, we may show representative re-
sults on some datasets.

e Results of certain algorithms are missing under some set-
tings. This is mainly because they cannot finish within
a reasonable amount of time, or the implementation has
certain restriction.

6.2 Preprocessing Time and Index Size

We first test the preprocessing time for eight algorithms
supporting edit similarity searches on all four datasets. We
select results on IMDB and UNIREF to show in this section.
The preprocessing time is measured as the elapsed time be-

Shttp://www.imdb.com

7http ://www.informatik.uni-trier.de/"ley/db
8http ://beta.uniprot.org/

9http ://trec.nist.gov/data/t9_filtering.html

tween when the system starts and when it is ready to process

queries[™] The results are shown in Figures [5(a)l[5(b)

We can make the following observations.

e In terms of trend, most algorithms have almost flat pre-
processing time as 7 increases. Flamingo, Trie-Join and
B%-tree are expected so, as they preprocess the entire
dataset irrespective of 7. There is little increase in time
for Ed-Join, IndexGram, and IndexChunk, as their prefixes
and hence indexing time increases linearly with 7. Pre-
processing time of PartEnum increases quickly after 7 = 2,
as it generates more signatures (its asymptotic signature
number per string is O(7>*?) [2]). NGPP’s time also in-
creases very fast as 7 increases. This is because the num-
ber of signatures it creates is O(72).

e In terms of absolute time, IndexChunk is clearly the fastest
on both datasets, as it only needs to index 7 + 1 signa-
tures, which is the lower bound for all signature-based
schemes. It takes only 20%-25% of the time used by the
runner-up on the two datasets. The runner-up on IMDB
is IndexGram and on UNIREF is Flamingo.

Next, we measured the relative index size, which is de-
fined as the ratio of index size over data size. The results

are shown in Figures [5(c)H5(d)|

‘We observe that

e IndexChunk and Ed-Join belong to a group with the small-
est index sizes, typically taking 10%—-110% size of the data.
IndexChunk is clearly the smallest as it indexes only 7+ 1
signatures. Its index size is only 3MB for the 270M TREC
dataset for 7 = 1. Ed-Join index g7 + 1 signatures in the
worst case; but as seen here, in practice, it is much smaller
than that. The index sizes of both algorithms also grow
linearly with 7.

e the next group of algorithms is B®?-tree, IndexGram, and
Flamingo, typically taking 200%—-800% size of the data. In-
dexGram always takes little bit less space than Flamingo, as
can be expected from theoretical analysis. B®%-tree orga-
nizes the index in a BT -tree, yet usually occupies smaller
space than the other two. The index sizes of these algo-
rithms are typically insensitive to 7.

e NGPP’s index size is competative only for 7 € [1,2]. Its
index size increase rapidly with 7. PartEnum’s index size
is also very large. It flattens as we use a fixed (n1,n2)
combination for large 7s.

6.3 Edit Similarity Search Performance

To test the query processing time of all algorithms on four
datasets, we generate 1000 random queries for each dataset.
We measure the average query time and show the results of
seven algorithms in Figure Figure

We observe that
e Query performances on DBLP, TREC, and UNIREF ex-

hibit certain patterns. (i) The fastest algorithm is Index-

Gram, followed by IndexChunk. The second runner-up is

either NGPP or Ed-Join. The average query time of In-

dexGram is less than 1ms for all the thresholds tested on
the three datasets. This is expected as it only probes the
inverted index 7 + 1 times per query, hence generating

a small candidate set efficiently. Other filters also con-

tribute to keep its query time extremely low. (ii) The slow-

est algorithms are usually PartEnum, B®%-tree, Flamingo,

OHence it includes the preprocessing and indexing time. Note
that different algorithms may perform different tasks during this
amount of time.

1042

http://www.imdb.com
http://www.informatik.uni-trier.de/~ley/db
http://beta.uniprot.org/
http://trec.nist.gov/data/t9_filtering.html

and Trie-Join. PartEnum is only competitive for 7 € [1, 2].
Flamingo does not work well for large datasets consisting
of long strings such as TREC and UNIREF. B®“-tree, on
the other hand, seems to be working better than Flamingo
on TREC and UNIREF, but worse on DBLP. Trie-Join
works well with small 7s but its time increases quickly
with large 7s.

The IMDB dataset is hard for all algorithms. NGPP has
the best performance for almost all threshold settings, fol-
lowed by IndexChunk, IndexGram, Flamingo, and Ed-Join.
Still our two newly proposed algorithms have substan-
tial lead over Ed-Join— the query time of IndexChunk,
IndexGram, and Ed-Join are 12.9, 15.2, and 32.2 ms, re-
spectively, for 7 = 2. Then PartEnum works reasonably
well for T € [1,2], but becomes slower than B¢?-tree and
Flamingo when 7 changes from 3 to 4.

The overall trend for all algorithms is that the query time
increases with 7. This is expected as a large 7 leads to
more candidates and also more results. The query time
of most algorithms grows slowly with the increase of 7 on
DBLP, TREC, and UNIREF, but seems to grow rapidly
on IMDB.

6.4 Tuning IndexChunk and IndexGram

We now turn to our two proposed algorithms and study
their performances with respect to the choice of ¢ and the
filtering methods.

Effect of q. We show the average query time of Index-
Chunk and IndexGram with different g values in Figures
Results on other datasets are similar.

We can see that the choice of ¢ has substantial impact on
the query time. On IMDB, the best ¢ for both algorithms
is within [4, 5]. On UNIREF, the best ¢ is within [12, 13] for
IndexChunk, [14,16] for IndexGram. For both algorithms, a
small q value means ¢g-grams are not very selective and hence
their postings lists are long; a large ¢ value will reduce the
lower bound of common signatures, hence reducing the ef-
fect of count filtering and requiring substantial verification
costs to remove false positives.

Effect Of Filtering. = We show the average query time of
IndexChunk and IndexGram with different candidate filtering
methods (Section [§) in Figures [5(k)H5(n)|

As we can see, for datasets where strings are relatively
short, such as DBLP and IMDB, DPErrEsti usually has the
best performance; for datasets where strings are relatively
long, such as TREC and UNIREF, NaiveCountFilter has
slight advantage over both DPErrEsti and DPTrueMatches
for most threshold settings. This is because we use small ¢
for short string collections and large ¢ for long string collec-
tions. When ¢ is short, g-grams are not very selective, hence
the number of candidate matches could be much higher than
the number of true matches. For large ¢, the number of can-
didate matches is very close to the number of true matches,
and additional filtering is not beneficial.

6.5 Comparing with PF and PC

We compared the IndexGram algorithm with the PF and
PC algorithms. We concatenate all strings in a dataset into
a single long string, in order to use the author’s implemen-
tation. The average query times are given in Table @l We
can see that IndexGram outperforms PF and PC on datasets
with short strings (IMDB) and long strings (UNIREF). We
achieve a speedup of up to 3.5x on IMDB and 500-1,600x on

1043

UNIREF. This is mainly because we only probe the inverted
index using g-grams with low frequencies.

Table 4: Comparing with PF and PC
(a) Average Query Time on IMDB (ms)

|T | IndexGram | PF | PC |
1 060 | 1.03| 096
2 345 | 767 | 7.89
3 15.15 | 48.15 | 48.83
4 59.10 | 207.99 | 212.14

(b) Average Query Time on UNIREF

(ms)

7 | IndexGram PF PC
2 0.06 | 53.35 98.09
4 0.09 | 55.32 | 138.58
6 0.11 | 55.62 178.6

6.6 Similarity Joins

We now consider edit similarity joins. We first consider
self-joining the DBLP dataset with 7 € [1,5]. We mea-
sure the overall time of the algorithms, i.e., including the
preprocessing time and join time. The result is shown in

Figure We can see that

e the best performance is achieved by IndexChunk, followed
by Ed-Join and IndexGram. The second best group of al-
gorithms is PartEnum (for 7 € [1,4]) and Trie-Join. The
rest of the algorithms, NGPP, B®?-tree, and VGRAM, are
among the slowest.

the join time of all algorithms grows with the increase of
7. Some of the algorithms, e.g., Trie-Join, is on par with
Ed-Join and IndexGram for 7 = 1, but its performance
deteriorates rapidly with 7.

We also used the UNIREF dataset with 7 € [4,20]. Only
four algorithms can finish within a reasonable amount of
time (5 hours). The result is shown in Figure We can
see that IndexChunk is still the best algorithm, followed by
IndexGram, Ed-Join, and finally B®’-tree. The join time is
not sensitive to 7 for all algorithms except B®%-tree, as the
number of join results is relatively small compared to the
size of dataset, and hence most running time is spent on
preprocessing the data. The join time varies substantially
with the choice of the algorithm, with the running time of
B?-tree 10 times that of IndexChunk for 7 = 20.

6.7 Additional Observations and Summary

Edit Similarity Searches vs. Joins. One observation
is that the relative performance among algorithms for edit
similarity searches and joins is generally different. E.g., we
can compare Figure and Figure IndexGram is the
fastest search algorithm, but is only the third fastest for
joins. Both Flamingo and NGPP perform pretty well on
search, but not particularly efficient for joins.

Space-Time Characterization. Another observation is
that these algorithms exhibit very different characteristics
in terms of their space and time complexity (with varying
7). To illustrate this, we plot the index size and query time
for six algorithms under different 7 in Figure and Fig-
ure Note that both axes are in logarithmic scale. As

we can observe, the relative positions of these algorithms are
fixed even for very different datasets (DBLP vs. UNIREF).
As the following table shows, we may roughly categorize
these algorithms into the following four quadrants.

Index Size | Query Performance | Algorithm(s)
Small Very Fast IndexChunk

Small Fast Ed-Join

Large Very Fast IndexGram, NGPP
Large Fast Be¢d-tree, Flamingo

7. CONCLUSIONS

In this paper, we study the problem of efficiently pro-
cessing edit similarity searches and joins. Unlike previous
methods which extract equal amount of signatures for the
data and query strings, we propose an asymmetric method
based on extracting ¢-grams and g¢-chunks from the data
and query strings. Based on this new signature scheme and
prefix filtering, we design two algorithms, IndexChunk and
IndexGram. They both achieve the minimum number of sig-
natures as 7+ 1. Several novel candidate pruning techniques
are developed for the two algorithms. Finally, we have per-
formed a comprehensive experimental study comparing our
two algorithms with seven other state-of-the-art algorithms.
Our algorithms outperform other algorithms in most cases.
The experimental results also reveal interesting space-time
trends of existing algorithms against threshold 7.

Acknowledgement. We thank all authors who sent us the
implementations of their algorithms used in the experiments. We
also thank the reviewers for their valuable comments and im-
portant references. Wei Wang was partially supported by ARC
DP0987273 and DP0881779. Xuemin Lin was partially supported
by ARC DP110102937, DP0987557, DP0881035, NSFC61021004,
and Google Research Award.

8. REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool. Journal of
molecular biology, 215(3):403-410, 1990.
A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.
R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, 2007.
A. Z. Broder. On the resemblance and containment of
documents. In SEQS, 1997.
A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks, 29(8-13):1157-1166, 1997.
M. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, 2002.
S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive oper-
ator for similarity joins in data cleaning. In ICDE, 2006.
S. Chaudhuri and R. Kaushik. Extending autocompletion
to tolerate errors. In SIGMOD Conference, 2009.
A. Chowdhury, O. Frieder, D. A. Grossman, and M. C.
McCabe. Collection statistics for fast duplicate document
detection. ACM Trans. Inf. Syst., 20(2):171-191, 2002.
P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
VLDB, pages 426435, 1997.
V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. Similar-
ity join in metric spaces. In ECIR, pages 452-467, 2003.
V. Dohnal, C. Gennaro, and P. Zezula. Similarity join in
metric spaces using ed-index. In DEXA, 2003.
G. Forman, K. Eshghi, and S. Chiocchetti. Finding similar
files in large document repositories. In KDD, 2005.

2]
(3]
(4]

(5]

[6]
(7]
(8]

(9]

(10]

(11]
(12]

(13]

1044

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, 1999.
[15] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, 2001.
[16] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free (erratum). Technical
Report CUCS-011-03, Columbia University, 2003.
A. Guttman. R-trees: A dynamic index structure for spa-
tial searching. In SIGMOD Conference, pages 47-57, 1984.
M. Hadjieleftheriou and C. Li. Efficient approximate search
on string collections. PVLDB, 2(2):1660-1661, 2009.
T. Kahveci and A. K. Singh. Efficient index structures for
string databases. In VLDB, pages 351-360, 2001.
N. Koudas and K. C. Sevcik. High dimensional similarity
joins: Algorithms and performance evaluation. IEEE
Trans. Knowl. Data Eng., 12(1):3-18, 2000.
C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, 2008.
C. Li, B. Wang, and X. Yang. VGRAM: Improving
performance of approximate queries on string collections
using variable-length grams. In VLDB, 2007.
G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31-88, 2001.
G. Navarro and R. A. Baeza-Yates. A practical q -gram
index for text retrieval allowing errors. CLEI Electron. J.,
1(2), 1998.
G. Navarro and L. Salmela. Indexing variable length
substrings for exact and approximate matching. In SPIRE,
pages 214-221, 2009.
S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.
D. Sokol, G. Benson, and J. Tojeira. Tandem repeats over
the edit distance. Bioinformatics, 23(2):30-35, 2007.
B. Stein. Principles of hash-based text retrieval. In SIGIR,
pages 527-534, 2007.
B. S. T. Bocek, E. Hunt. Fast Similarity Search in Large
Dictionaries. Technical Report ifi-2007.02, Department of
Informatics, University of Zurich, April 2007.
M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs:
robust and efficient near duplicate detection in large web
collections. In SIGIR, pages 563-570, 2008.
R. A. Wagner and M. J. Fischer. The string-to-string
correction problem. J. ACM, 21(1):168-173, 1974.
J. Wang, J. Feng, and G. Li. Trie-join: Efficient trie-based
string similarity joins with edit. In VLDB, 2010.
W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient approx-
imate entity extraction with edit constraints. In SIMGOD,
2009.
C. Xiao, W. Wang, and X. Lin. Ed-Join: an efficient
algorithm for similarity joins with edit distance constraints.
PVLDB, 1(1):933-944, 2008.
J. Xu, Z. Zhang, A. K. H. Tung, and G. Yu. Efficient and
effective similarity search over probabilistic data based on
earth mover’s distance. PVLDB, 3(1):758-769, 2010.
X. Yang, B. Wang, and C. Li. Cost-based variable-
length-gram selection for string collections to support
approximate queries efficiently. In SIGMOD Conference,
pages 353-364, 2008.
R. Zhang, B. C. Ooi, and K.-L. Tan. Making the pyramid
technique robust to query types and workloads. In ICDE,
pages 313-324, 2004.
Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivas-
tava. B¢?-tree: an all-purpose index structure for string
similarity search based on edit distance. In SIGMOD
Conference, pages 915-926, 2010.
Z. Zhang, B. C. Ooi, S. Parthasarathy, and A. K. H.
Tung. Similarity search on bregman divergence: Towards
non-metric indexing. PVLDB, 2(1):13—-24, 2009.

(17]
(18]
(19]

20]

(21]

(22]

(23]

[24]

[25]

[26]
27]
28]

29]

(30]

(31]
32]

33]

(34]

(35]

(36]

(37]

(38]

(39]

	Introduction
	Problem Definition and Related Work
	Problem Definition
	Prior Work

	A Signature-based Framework for Edit Similarity Queries
	A Framework Based on Content Signatures
	Minimum Signature Size

	q-chars: An Asymmetric Signature Scheme
	q-chars-based Signature Scheme
	IndexChunk and IndexGram
	Query Preprocessing Algorithm

	Advanced Filtering
	Naïve Count Filtering
	Finding True Matches
	Error Estimation-based Filtering

	Experiments
	Experiments Setup
	Preprocessing Time and Index Size
	Edit Similarity Search Performance
	Tuning IndexChunk and IndexGram
	Comparing with PF and PC
	Similarity Joins
	Additional Observations and Summary

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

