
On Gapped Set Intersection Size Estimation

Chen Chen Jianbin Qin Wei Wang
University of New South Wales, Australia

{cchen, jqin, weiw}@cse.unsw.edu.au

ABSTRACT

There exists considerable literature on estimating the car-
dinality of set intersection result. In this paper, we con-
sider a generalized problem for integer sets where, given a
gap parameter δ, two elements are deemed as matches if
their numeric difference equals δ or is within δ. We call this
problem the gapped set intersection size estimation (GSISE),
and it can be used to model applications in database sys-
tems, data mining, and information retrieval. We first dis-
tinguish two subtypes of the estimation problem: the point
gap estimation and range gap estimation. We propose op-
timized sketches to tackle the two problems efficiently and
effectively with theoretical guarantees. We demonstrate the
usage of our proposed techniques in mining top-K related
keywords efficiently, by integrating with an inverted index.
Finally, substantial experiments based on a large subset of
the ClueWed09 dataset demonstrate the efficiency and ef-
fectiveness of the proposed methods.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords

Indexing; Set Intersection Size Estimation; Top-k

1. INTRODUCTION
Set intersection is a fundamental operation in many

fields in computer science. Given two sets SA and SB , set
intersection SA ∩ SB is to find all the common elements
from two sets. A common case is that all elements in the set
are integers (e.g., document IDs or positions in an inverted
index). Hence, the common element pair (a, b) satisfies
b− a = δ, where a ∈ SA, b ∈ SB and δ = 0.

In this paper, we generalize the set intersection on integer
sets to allow for “gaps” (i.e., δ > 0). We define two primi-
tives: the point gap constraint corresponds to a fixed gap of
δ, and the range gap constraint corresponds to a gap of size

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

CIKM’15, October 19–23, 2015, Melbourne, Australia.

© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806438.

no larger than δ. We are interested in methods to estimate
these gapped set intersection size efficiently and accurately.
This problem has many applications. For example,

• Information Retrieval : In information retrieval, the
search engine needs to intersect the positional inverted
lists of query keywords to answer a multiple keyword
phrase query. A state-of-the-art query processing method,
svs, performs binary intersection using a heuristic order
that is purely based on the length of the inverted
lists [11]. This heuristic is not effective when search
keywords are not very selective (e.g., “to be or not to
be”). It is possible that a pair of query keywords with the
positional constraint imposed by the phrase query will
result in very small intermediate result size (e.g., “be”
followed immediately by “or”). Hence, if we can estimate
its cardinality accurately and efficiently, we may find
a better inverted list intersection order to process such
queries. We can model this as a gapped set intersection
size estimation problem with a point gap constraint of 1.
• Sentiment or Event Analyses: In sentiment analysis, we

extract different types of events, including a mention
of a product, and an occurrence of sentiment (e.g., the
word “fantastic”). We are usually interested in events
that occur in a close vicinity. For instance, the positions
of their occurrences in a document are within δ [17] or
the timestamps of their occurrences in tweets are within
δ [25]. We can model this as a gapped set intersection
size estimation problem with a range gap constraint of δ.

Motivated by the examples, we define and study the
problem of gapped set intersection size estimation (abbre-
viated as GSISE). For the estimation problem with point
gap constraints, we propose a basic method that reduces
the problem to the standard set intersection size estimation
problem, which can be solved using the state-of-the-art
sketch method. However, the index space is linear to the
maximum query gap allowed. We improve it by judiciously
selecting a subset of sketches to construct, and this reduces
our sketch size from O(N) to O(

√
N). The space cost of our

approach is proved to be asymptotically optimal, while the
time complexity remains the same. For the estimation prob-
lem with the range gap constraint, a baseline method is to
reduce the problem into multiple estimation problems with
different point gap constraints, and this requires estimation
time linear in the gap size. We propose an extension of the
bottom-k sketch to multiset and an unbiased estimator for
inner product, we achieve an accurate and fast estimation
method that is independent of the gap size. To demonstrate
the use of our estimation methods, we consider the problem
of finding highly correlated keywords from a large document
collection. We design a new query processing method based

1351

on indexing the hash values in our sketches. Finally, we per-
form large-scale experimental evaluation using 500 million
documents from the ClueWeb09 data collection and demon-
strate the accuracy and efficiency of our proposed methods.

Contributions. The contributions of this paper are
summarized as follows.
• To the best of our knowledge, this is the first work to for-

mally define the point and range gapped set intersection
size estimation problems, which can be used as primitive
operations in a wide spectrum of applications.
• We design space and time efficient sketch and estima-

tion methods for both types of estimation tasks. Our
estimates are unbiased and have theoretical guarantees.
• We demonstrate the application of our technique for

approximately mining top-K related keywords from large
document collections. Our technique is especially useful
in this application scenario where an exact solution
requires orders of magnitudes larger space and time.
• Comprehensive experiments on the ClueWed09 dataset

demonstrate the efficiency and accuracy of the proposed
methods.

Organization of the paper. The rest of the paper is
organized as follows. Section 2 briefly surveys the related
works. Section 3 defines the problem formally and intro-
duces several useful techniques. Section 4 elaborates the
estimation framework for point query and range query, to-
gether with their theoretical properties. Section 5 presents
algorithm to top-K related keywords mining application.
The experimental results are reported and analyzed in
Section 6. We conclude the paper in Section 7.

2. RELATED WORKS

Exact set intersection. Set intersection has long been a
fundamental problem. There are plenty of literature focus-
ing on set intersection problem [12, 13]. The algorithms
working on sorted set are mostly used [24]. By applying lin-
ear merge of two sorted set SA and SB , the set intersection
can be finished in O(|SA|+ |SB |) time. However, when the
set sizes are unbalanced, the method is inefficient. In [18],
authors propose a set intersection approach requiring

O(|SB | + log

(

|SA|+ |SB|
|SA|

)

) when |SA| ≪ |SB |. There are

also works further improving the performance by utilizing
hashing, and adaptive methods [3, 2]. Unlike the above
literature, we want to estimate the gapped set intersection
size rather than calculating the exact result.

Set intersection size estimation. The problem of set
intersection size estimation is to estimate the cardinality of
intersection with a sketch method, which has been exten-
sively studied in [6, 4, 7]. Nevertheless, all existing methods
are designed for non-gapped set intersection size estimation.
A näıve way to extend existing methods to support the
GSISE problem is to build sketch for each possible query
gap. However, it will result in the index space linear to the
maximum gap. Furthermore, the computational complexity
for range query will be linear to the query gap. In this
paper, we try to reduce both space and computational
complexity in processing GSISE. In addition, there are
several works [26, 21] that calculate an upper bound of set
intersection size, which is orthogonal to our problem.

Top-K query. One of the most important applications of
GSISE is top-K related keyword mining. The problem is
well studied in [16, 15]. Afterwards, there are varieties of

follow-up works dealing with top-K ranking for different
applications, e.g., keyword queries [20], top-K preference
ranking queries [23] and semi-structure queries [27].

Most of the works, such as [28], are based on the strategy
that gradually scans the inverted index and updates the
upper and lower bounds of the ranking terms, in order to
achieve early stopping. However, the above strategy is not
well suited in our sketch based estimation framework. Since
it is non-trivial to obtain a tight bound for the estimation.
Instead, a hash table based method is proposed in Section 5
to accelerate the top-K query processing.

3. PRELIMINARIES
In this section, we define two estimation problems, intro-

duce existing work on estimating the size of set intersection
using sketch, and finally list important notations used in
the paper.

3.1 Problem Definition
Given two sets SA and SB , their intersection is defined

as { (a, b) | eq(a, b), a ∈ SA, b ∈ SB }, where the predicate
eq(a, b) checks if a equals b. We can generalize the set
intersection by considering other meaningful predicates.
Specifically, with a gap parameter δ ≥ 0, we consider the
following two predicates:
• PointGapδ(a, b), which returns true if and only if

b− a = δ.
• RangeGapδ(a, b), which returns true if and only if

0 ≤ b− a ≤ δ.
We call set intersection with these two new predicates
collectively gapped set intersection. They are denoted
as SA ∩=δ SB (named point gapped set intersection) and

SA ∩≤δ SB (named range gapped set intersection), respec-
tively. Obviously, the standard set intersection is a special
case of both types of gapped set intersection where δ = 0.

In this paper, we study space and time-efficient methods
to estimate the results size of these two types of gapped set
intersection. Motivated by the applications we aim at, we
consider sets whose elements are integers.

Definition 1 (GSISE). Given two sets SA and SB, and
a gap parameter δ ∈ [0, N] where N is a predefined maximum
gap value. The Point and Range Gapped Set Intersection
Size Estimation Problem is to estimate |SA ∩=δ SB | and
|SA ∩≤δ SB|, respectively. They are abbreviated as point
estimation and range estimation hereafter.

Example 1. Let SA = { 1, 3, 4, 7 } and SB = { 2, 5, 6, 8 },
and δ = 2. Under the point gap constraint, SA ∩=2 SB =
{ (3, 5), (4, 6) }. Hence its size is 2. Under the range gap

constraint, SA ∩≤2 SB = { (1, 2), (3, 5), (4, 5), (4, 6), (7, 8) }.
Hence its size is 5.

Discussions. In the above definitions, we only need to
consider δ ≥ 0. This is because SA ∩=δ SB = SB ∩=−δ SA

(this also holds for range gapped set intersection too).
Many other types of interesting gapped set intersections

can be defined using our point and range gapped set
intersection as primitives. For example, consider the
predicate RangeWithinδ1 ,δ2 (a, b) with two range parameters
0 ≤ δ1 < δ2, which checks if δ1 ≤ a−b ≤ δ2. It is easy to see
that its query result is exactly the difference of two range
gapped set intersection, i.e., (SA ∩≤δ2 SB) \ (SA ∩≤δ1 SB).

In a similar fashion, we can derive point gapped set
intersection based on range gapped set intersection, and

1352

vice versa. Nevertheless, we still consider them as two
separate primitives, as each of them can model different
applications respectively, and we will propose related but
different estimation methods and optimizations for them.

3.2 Bottom-k Sketch
The state-of-the-art method to estimate the size of

set intersections is the bottom-k sketch [7, 8, 9]. It is a
lightweight sketch that supports efficient update.

We use sk(SA) to denote the bottom-k sketch for a set
SA, which is a set of k hash values. To construct the
sketch, we apply a random hash function h to every element
a ∈ SA, and keep the k minimum hash values. We also
assume the codomain of h is sufficiently large such that we
can safely assume that there is no collision.

An important property of the bottom-k sketch is that
it is closed under set union operation. Specifically, we
can directly compute the bottom-k sketch of the union
of two sets from their respective bottom-k sketches. The
resulting sketch is called short combination sketch [9]:
scs(sk(SA), sk(SB)) = { v | v ∈ sk(SA) ∪ sk(SB), v <

min(sk(SA)
(k), sk(SB)(k)) }, where the notation S(k)

denotes the k-th smallest value in the set S.
To estimate the intersection size of two sets SA and SB

from their respective sketches, we compute

t =
|sk(SA) ∩ sk(SB) ∩ scs(sk(SA), sk(SB))|

min{ sk(SA)
(k), sk(SB)

(k) }
. (1)

[9] proved that t is an unbiased estimator of |SA∩SB| that
can be computed efficiently. Besides, it is shown to have
smaller variance compared with the Minhash [5] method.

3.3 Notations
Table 1 lists notations frequently used in the paper.

Table 1: Summary of Notations
Symbol Explanation

Sid a set of integers

Mid a multiset; each element has its multiplicity

S+d
id

a shifted set by distance d

{d1, d2, . . .} the index of a multiset generated by merging
the set shifted by d1, d2, . . .

S(i) or M (i) i-th smallest value in the set S or themultisetM

N the maximum gap

δ the gap parameter; δ ∈ [0, N]

k number of hash values in a bottom-k sketch

sk(S) bottom-k sketch of the set S

msk(M) multiset bottom-k sketch of the multiset M

rus range union sketch of msk(MA) and msk (MB)

4. ESTIMATION METHODS FOR

GAPPED SET INTERSECTION SIZE
In this section, we introduce solutions to point and range

estimation problems. The näıve index structure and our
intuition are explained in Section 4.1, followed by technique
details of GSISE methods in Section 4.2 and 4.3.

4.1 A Baseline Method for Point Estimation
Point estimation is a challenging problem due to the

following reasons:
• Almost all the set intersection size estimation methods

are based on random hash functions. Therefore, given a

gap value δ, and two different hash values h(x + δ) and
h(y), it is almost impossible to infer if x+ δ is equal to y.
• While locality sensitive hash functions [19] do preserve

locality probabilistically, the intersection size is highly
sensitive to the point gap threshold. It is often the case
that |SA ∩=δ SB | and |SA ∩=δ+1 SB | differ substantially.
For instance, in Example 1, |SA ∩=0 SB| is 0 while
|SA ∩=1 SB | is 3. Therefore, even a small approximation
in the gap may result in a large estimation error.
Therefore, we first propose a baseline method, which

reduces the point estimation problem to a standard set
intersection size estimation problem, which in turn can
be solved using the state-of-the-art method, such as the
method based on bottom-k sketches.

Our reduction is based on the notion of shifted sets.
Given a set SA = { a1, a2, . . . , an } and integer param-
eter d, we define the shifted set with shift d as follows:
S+d
A

:= { ai + d | ai ∈ SA }.
Given the maximum gap size N , we compute N + 1

bottom-k sketches by shifting SA: the i-th bottom-k sketch
is built for the shifted set S+i

A (0 ≤ i ≤ N). To perform the

estimation for SA ∩=δ SB, we retrieve the sketches of S+δ
A

and S+0
B , and perform the estimation using the bottom-k

estimation procedure (i.e., Eq. (1)).

Table 2: The Random Hash Function h
x 0 1 2 3 4 5 6 7 8

h(x) 0.47 0.26 0.32 0.84 0.74 0.79 0.22 0.42 0.95

x 9 10 11 12 13 14 15 16 17

h(x) 0.48 0.68 0.89 0.16 0.63 0.37 0.53 0.15 0.21

Example 2. Table 3 shows the sketches built by the
baseline method for two sets SA and SB, where the bottom-k
sketch size is 3 and maximum gap N is 9.

To perform the point estimate for δ = 5, we load
sk(S+5

A) and sk(S+0
B), the estimate according to Eq. (1) is

1/min(0.48, 0.79) = 2.08. The actual point gapped intersection
size is 2.

Table 3: N + 1 bottom-k Sketches Built for
SA = { 1, 3, 4, 7 } and SB = { 2, 5, 6, 8 } using the
Hash Function in Table 2. N = 9.

shift Sketches for SA Sketches for SB

0 sk(S+0
A) = {0.26, 0.42, 0.74} sk(S+0

B) = {0.22, 0.32, 0.79}

...
...

...

5 sk(S+5
A) = {0.16, 0.22, 0.48} sk(S+5

B) = {0.42, 0.63, 0.68}

...
...

...

9 sk(S+9
A) = {0.15, 0.16, 0.63} sk(S+9

A) = {0.21, 0.37, 0.53}

Obviously, this baseline method achieves the same
accuracy guarantee as the standard bottom-k sketch [4, 7,
22], and the estimation time is O(k). The main problem is
its space complexity of O(N · k) for each set, which is not
optimal.

4.2 Improved Point Query Estimation
In this subsection, we seek to improve the space complex-

ity per set from N · k to
√
N · k, while still maintaining the

same O(k) estimation time. We also show that this space

1353

complexity is asymptotically optimal with an approximation
ratio of

√
2.

We observe that we can generate sketches for a judiciously
chosen subset of all possible shifted sets, to ensure that can
still find two appropriate sketches for two sets to perform
the point estimation for any δ ∈ [0, N].

Let λ := ⌈
√
N⌉. For a set SA, we generate 2λ sketches

for SA shifted by i ∈ I , where

I = { 0, 1, 2, · · · , λ− 1 } ∪ { i · λ | i ∈ [1, λ] } (2)

Algorithm 1 describes the estimation procedure. Lines 2–
5 compute the correct offsets (also called indices) of the
sketches of SA and SB . Then Line 6 performs the estimation
with the corresponding bottom-k sketches.

Algorithm 1: PointQueryOnlineEstimation(SA, SB, δ)

Input : δ: query gap. N : maximum gap.
Output: An estimate of |SA ∩=δ SB |
λ← ⌈

√
N⌉;1

if δ (mod λ) = 0 and δ 6= N then2

iA ← λ+ δ; iB ← λ;3

else4

iA ← ⌈δ/λ⌉ · λ; iB ← ⌈δ/λ⌉ · λ− δ;5

return Bottom-k-Estimate (sk(S+iA
A), sk(S+iB

B));6

Example 3. Continue the previous example. λ = ⌈
√
N⌉

= 3. In our improved method, the following sketches are
generated for every set S

sk(S+0
i), sk(S+1

i), sk(S+2
i), sk(S+3

i), sk(S+6
i), sk(S+9

i).

For point estimation with δ = 5, we compute iA = 6 and
iB = 1 according to Algorithm 1. Then we load sk(S+6

A) and

sk(S+1
B) and perform the estimation.

The correctness of Algorithm 1 depends on two facts:

• Gapped set intersection size is shift-invariant as shown in
Lemma 1, and
• ∀δ ∈ [0, N], we can always locate the iA and iB from the

index set (Equation (2)) such that iA − iB = δ.

Lemma 1. ∀d, |SA ∩=δ SB | = |S+d
A ∩=δ S+d

B |.

The improved method has a O(
√
N · k) space complexity

per set, O(k) estimation time, and the same estimation
quality guarantees as the bottom-k sketch.

4.2.1 Asymptotic Space Optimality and Approxima-
tion Ratio

We show that our improved method is asymptotically
space optimal in this reduction framework. To facilitate
the analysis, a computational model is formalized below in
Definition 2.

Definition 2. Given set G = { 0, 1, 2, · · · , N }, where N
is the maximum gap predefined. We want to find an integer
set P with minimum cardinality, such that ∀g ∈ G, there
exist i, j ∈ P satisfying i− j = g.

Property 1. The lower bound of |P | is Ω(
√
N).

Proof. First there are no duplicate elements in P ,
otherwise |P | cannot reach the minimum since it is allowed
to choose two identical elements from P to get 0 ∈ G. Now
that all elements in P are different, we can construct a
mapping f from i − j to G \ { 0 }. It is easy to see the
lower bound will be achieved when the mapping is bijective.
Hence, the number of all possible choices of i − j is

(

|P |
2

)

.

Since
(

|P |
2

)

≥ N , we have |P | = Ω(
√
N).

Corollary 1. The number of sketches constructed in
our improved method is within a factor of

√
2 of the optimal

solution.

4.3 Range Estimation

4.3.1 Basic Method for Range Estimation
Our basic method for range estimation is to reduce a

range estimation to multiple point estimations, due to the
following equivalence.

Theorem 1. SA ∩≤δ SB =
⋃δ

i=0

(

SA ∩=i SB

)

. In

addition, ∀i 6= j, ({SA ∩=i SB }) ∩ ({SA ∩=j SB }) = ∅.

Theorem 1 reveals that the range gapped set intersection
results can be partitioned into disjoint subsets, each is
the result of a point gapped set intersection. Taking the
cardinality on both sides of the equation and we have the
following Corollary.

Corollary 2. |SA ∩≤δ SB| =
∑δ

i=0 |SA ∩=i SB |.

Corollary 2 enables us to sum up δ + 1 point estimation
results to answer a range estimation. While this does not
increase the space complexity, the estimation time is linear
in the range δ. When δ is large, the estimation time grows
quickly, which is not desirable.

4.3.2 Merge of Shifted Sets
We introduce several essential concepts, which enable us

to present an observation using an example. This relates
the range estimation to the problem of estimating the inner
product of multisets, each obtained by merging shifted sets
in a particular pattern.

We define a multiset M as a set of elements,
each associated with its multiplicity, i.e., M =
{ a1 :m1, a2 :m2, . . . , an :mn }. elems(M) returns all
the elements in the multiset M , i.e., { a1, a2, . . . , an }. The
multiplicity of an element e in M is denoted as cntM (e).
Note that a set is just a special case of a multiset where all
the multiplicities equal 1.

Let U be the universe of all elements. Each multiset can
be implicitly cast into a |U |-dimensional vector where the
dimension values are the multiplicities of the corresponding
elements (default to 0). Hence, we can define the inner
product of two multisets as

〈MA,MB〉 =
∑

e∈elems(MA)∩elems(MB)

cntMA(e) · cntMB (e).

Now, we can illustrate an important observation that
leads to our improved range estimation in Example 4.

Example 4. Consider the same instance in Example 3
and we want to estimate SA ∩≤δ SB. Table 4(a) enumerates
for all possible δ ∈ [0, 8] the shifted SA and SB that will be
used for set intersection with point gap δ. For example, the

1354

Table 4: Illustration of Shift Sets Used for Point/Range Estimation for δ ∈ [0, 8]
(a) Shifted Sets (Illustrating δ =
5)

S+9
A 8 7 6

S+6
A 5 4 3

S+3
A 2 1 0

S+1
B S+2

B S+3
B

(b) Merged Shifted Sets (Illustrating δ = 7)

⊎

i∈{3,6,9} S+i
A 8 7 6 S+9

A
⊎

i∈{3,6} S+i
A 5 4 3 S+6

A
⊎

i∈{3} S+i
A 2 1 0 S+3

A
⊎

i∈{1,2,3} S+i
B

⊎

i∈{2,3} S+i
B

⊎

i∈{3} S+i
B

cell with green background is for δ = 5; it is associated with
S+6
A and S+1

B . This means |SA ∩=5 SB| = |S+6
A ∩ S+1

B |.
Now consider the range gapped set intersection with δ = 5.

Corollary 2 shows that the result size |SA ∩≤5 SB| equals the
sum of the size of 6 point gapped set intersections, with the
gap constraint between 0 and 5. By looking at Table 4(a), we
can see the latter is equivalent to 〈MA,MB〉, where

MA = (S+3
A ⊎ S+6

A), MB = (S+1
B ⊎ S+2

B ⊎ S+3
B)

Note that we need to use multiset union (also called merge

in this paper, denoted as ⊎) and the inner product, as there
may be potential duplicate elements. Obviously, if we can
estimate the inner product of multisets, then we can perform
one estimation rather than six point estimations.

By considering all possible δ values in Example 4, we
can observe the pattern where multiple shifted sets are
merged. To simplify the notation, we use the set of shift
values as an identifier (or index) for the merged multiset,

i.e., if M = S+i1
A ⊎ S+i2

A . . . ⊎ S
+ij
A , then we say M ’s index

is { i1, i2, . . . , ij } and it uniquely identifies M .

Let λ = ⌈
√
N⌉, and i ≥ 1.

• For shift values within [1, λ], we need to merge its suffixes,
i.e., generating indices { i, i+ 1, . . . , λ }, for 1 ≤ i < λ.
• For shift values within [λ, λ2], we need to merge its

prefixes, i.e., generating indices {λ, 2λ, . . . , i · λ }, for
1 < i ≤ λ.

4.3.3 Estimating the Inner Product of Two Multisets

As motivated in Example 4, we need to estimate the inner
product of two multisets. While there are many alternative
methods (such as Tug-of-War [1] and Count-Min [10]
sketches), we observe that the input multisets are always
those shifted sets generated for the point estimation task,
which means each of them has already its bottom-k sketch
built or maintained. Therefore, we develop an estimator by
extending the bottom-k sketch as follows.

Firstly, we define our multiset bottom-k sketch for
a multiset obtained by merging multiple shifted sets, each
with its own bottom-k sketch. Let S = {S1, S2, . . . , Sn }
denote a set of shifted sets, each with its bottom-k sketch
sk(Si). Let M = ⊎n

i=1Si. M ’s multiset bottom-k sketch,
denoted by msk(M), is obtained by a truncated merge of
the sketches, i.e.,
1. first merging sk(Si) into a multiset M ′, and
2. then keeping only the k smallest elements and their

multiplicities in M ′.
Figure 1 illustrates the relationship between a multiset
bottom-k sketch and its constituent bottom-k sketches.

Given two multiset bottom-k sketches msk(MA)
and msk(MB), their range union sketch, denoted by
rus(msk(MA),msk(MB)), is a multiset that contains all the
hash values in elems(msk(MA)) ⊎ elems(msk(MB)) that are

smaller than min(msk(MA)
(k),msk(MB)(k)), as well as the

sum of their multiplicities inmsk(MA) andmsk(MB). Given

{S1, S2, . . . , Sn } M

{ sk(S1), sk(S2), . . . , sk(Sn) } msk(M)

merge (i.e., ⊎)

truncated merge

bottom-k
sketch

multiset
bottom-k
sketch

Figure 1: From bottom-k Sketches to a Multiset
bottom-k Sketch

msk(MA) and msk(MB), we propose an unbiased estimator
of 〈MA,MB〉, as shown in Theorem 2. Furthermore, it can
be shown that, by using the range union sketch, our method
takes advantage of all the information available in msk(MA)
and msk(MB) to arrive at the best possible estimation.

Theorem 2. Given two multiset bottom-k sketches
msk(MA) and msk(MB), let rus∩ = elems(msk(MA)) ∩
elems(msk(MB)) ∩ elems(rus(msk(MA),msk(MB))), then

t̂r =

∑

e∈rus∩

(

cntmsk(MA)(e) · cntmsk(MB)(e)
)

min{msk(MA)(k),msk(MB)(k) } . (3)

is an unbiased estimator of 〈MA,MB〉.
Proof. Define adjusted multiplicity for each

e ∈ elems(MA) ∩ elems(MB) to be:

ae =

{

cntmsk(MA)(e)·cntmsk(MB)(e)

rus(l)
, if e is sampled in rus∩

0 , otherwise.

(4)

where rus(l) = min{msk(MA)
(k),msk(MB)

(k) }, i.e., it is
the l-th smallest hash values in rus. Then we can write t̂r

as
∑

e∈rus∩

cntmsk(MA)(e)·cntmsk(MB)(e)

rus(l)
. The expectation is

E
[

t̂r
]

= E

[

∑

e∈rus∩

cntmsk(MA)(e) · cntmsk(MB)(e)

rus(l)

]

=
∑

e∈elems(MA)∩elems(MB)

E [ae]

=
∑

e∈elems(MA)∩elems(MB)

cntmsk(MA)(e) · cntmsk(MB)(e)

=
∑

e∈elems(MA)∩elems(MB)

cntMA(e) · cntMB (e).

The last step is because rus keeps complete multiplicity
information for each underlying set element included in rus.
Complete means if element e is sampled in rus∩, it holds
that cntmsk(M)(e) = cntM (e). Since we are doing consistent
uniform sampling in elems(MA) ∪ elems(MB). Therefore,
E
[

t̂r
]

= 〈MA,MB〉.

1355

Furthermore, by setting k to an appropriate value, we
can achieve a probabilistic guarantee for t̂r, as shown in
Theorem 3.

Theorem 3. Let µ = 〈MA,MB〉. For any given ǫ and
ρ, by setting k = min{max{k1, k2}, max{|elems(MA)|,
|elems(MB)|}}, where k1 satisfies Eq. (5) and k2
= (|elems(MA)|+2)N

µ
· 2+ǫ

ǫ2
ln 4

ρ
, we can guarantee that

Pr
[

|t̂r − µ| ≤ ǫµ
]

≥ 1− ρ.

Proof. We first define two propositions (a) and (b).
Let Xi = ai · k

(|elems(MA)|+2)N
and ei be the corresponding

element, ai as defined in Eq. (4), and k1 and k2 as defined
in the Theorem.
• Proposition (a): When k ≥ k1, Pr [Xi > 1] ≤ ρ

2
.

• Proposition (b): When k ≥ k2, Pr
[

|t̂r − µ| ≥ ǫµ
]

≤ ρ

2
.

If both of them are proved, then when k ≥ max{ k1, k2 },
we know that Pr

[

|t̂r − µ| ≥ ǫµ
]

≤ ρ based on the Union
Bound.

Proof of Proposition (a).Without loss of generality, we
assume |elems(MA)| > |elems(MB)|. Given ρ, let k1 be
solution to Eq. (5):

∫ k
|elems(MA)|+2

0

tk−1(1− t)|elems(MA)∪elems(MB)|−k

B(k, |elems(MA) ∪ elems(MB)| − k + 1)
dt ≤ ρ

2
,

(5)

where B(k, |elems(MA) ∪ elems(MB)| − k + 1) is the Beta
function. It also holds:

Pr [Xi > 1]

= Pr

[

cntmsk(MA)(ei) · cntmsk(MB)(ei)

msk (MA)(k)
>

(|elems(MA)|+ 2)N

k

]

≤ Pr

[

msk (MA) <
k

|elems(MA)|+ 2

]

.

(6)

The last step is because cntmsk(MA)(ei)·cntmsk(MB)(ei) ≤ N .
Besides, when k > k1, Eq. (5) is equivalent to:

Pr

[

msk(MA)
(k) <

k

|elems(MA)|+ 2

]

<
ρ

2
. (7)

Since we are doing uniform random sample in the space
of elems(MA) ∪ elems(MB), where msk(MA)

(k) is the k-th
order statistics therein.

Thus from Eq. (6) and (7), we know when k > k1,
Pr [Xi > 1] ≤ ρ

2
.

Proof of Proposition (b). Now that we can guarantee
Xi ∈ [0, 1] almost surely by proving Proposition (a), we can
define X =

∑

Xi and apply the Chernoff bound to X.1

Let k2 = (|elems(MA)|+2)N
µ

· 2+ǫ

ǫ2
ln 4

ρ
. When k > k2, we have

2 exp

(

− ǫ2

2 + ǫ

µk

(|elems(MA)|+ 2)N

)

≤ ρ

2
.

According to the Chernoff bound, we have

Pr
[

|t̂r − µ| ≥ ǫµ
]

≤ 2 exp

(

− ǫ2

2 + ǫ
· µk

(|elems(MA)|+ 2)N

)

≤ ρ

2
.

Then from Union Bound, it guarantees that when
k ≥ max(k1, k2), Pr

[

|t̂r − µ| ≥ ǫµ
]

≤ δ.
1Since bottom-k belongs to sampling without replacement strat-
egy, it will cause negative associations between each sample
value [14]. Nevertheless, according to [14], Chernoff bounds are still
applicable to sums of random variables with negative associations.

4.3.4 Improved Range Estimator

In our improved methods, given a maximum gap N , let
λ = ⌈

√
N⌉. We generate three categories of sketches:

• Category I: λ + 1 bottom-k sketches for shifts
i ∈ { jλ | 0 ≤ j ≤ λ }
• Category II: λ− 1 multiset bottom-k sketches with indices
{λ, 2λ }, {λ, 2λ, 3λ }, · · · , {λ, 2λ, . . . , λ2 }.
• Category III: λ−1 multiset bottom-k sketches with indices
{λ, λ− 1 }, {λ, λ− 1, λ− 2 }, · · · , {λ, λ− 1, . . . , 1 }.
Table 4(b) illustrates Category I sketches on the right-

hand side, Category II sketches on the left-hand side, and
Category III sketches on the bottom side, for the running
example.

For any range [0, δ], it can always be decomposed to at
most two sub-ranges. For example, Table 4(b) illustrates
that [0, 7] is decomposed into

• [0, 5]. This corresponds to SA∩≤5SB , and can be answered
by estimating the size of 〈⊎i∈{3,6} S

+i
A ,

⊎

i∈{1,2,3} S
+i
B 〉.

• [6, 7]. This corresponds to SA ∩[6,7] SB, and can be
answered by estimating the size of 〈S+9

A ,
⊎

i∈{2,3} S
+i
B 〉.2

Algorithm 2: DecomposeRange (SA, SB , δ)

Input : δ: query gap. N : maximum gap.
Output: An array of indices pairs.
λ← ⌈

√
N⌉;1

if δ < λ or (δ + 1) mod x = 0 then2

iA ← { i · λ | i ∈ [1,max(⌈δ/λ⌉, 1)] };3

iB ← {λ− i | i ∈ [0, δ − ⌊δ/λ⌋ · λ] };4

return { (iA, iB) };5

else6

ilA ← { i · λ | i ∈ [1, ⌊(δ + 1)/λ⌋] };7

ilB ← { i | i ∈ [1, λ] };8

if δ = N then9

irA ← N ;10

irB ← 0;11

else12

irA ← λ · ⌈(δ + 1)/λ⌉;13

irB ← {λ− i | i ∈ [0, δ mod λ] };14

return { (ilA, ilB), (irA, i
r
B) };15

Algorithm 3: RangeQueryOnlineEstimation (SA, SB, δ)

Input : δ: query gap. N : maximum gap.
Output: t̂r: an estimate for SA ∩≤δ SB .
arr← DecomposeRange(δ) ;1

t̂r ← 0;2

for each (iA, iB) ∈ arr do3

Retrieve4

SA’s sketch based on the index of iA into msk(MA)
and retrieve SB’s sketch for iB into msk(MB);
t̂r ← t̂r + Estimate(msk(MA),msk(MB));5

/* Perform estimation using two multiset
bottom-k sketches based on Theorem 2 */;

return t̂r;6

We use Algorithm 3 to perform a range estimation with
the gap constraint δ. In Line 1, it calls the DecomposeRange

2We deem a bottom-k sketch as a special multiset bottom-k sketch
where the multiplicities are all set to 1.

1356

(δ) to decompose the range [0, δ] into one or two parts,
utilizing the multiset bottom-k sketches. The returned
results are one or two pairs of indices to these sketches.
Lines 3–5 retrieve the corresponding sketches and perform
the estimation based on Eq. (3) in Theorem 2.

The space complexity of the sketch for the range estima-
tion is O(

√
N ·k). And the time complexity for the estimate

is O(k). Thanks to Theorem 3, by setting the proper k, our
estimation has at most ǫ relative error with probability at
least 1− ρ.

Table 5: Multiset bottom-3 Sketch
indices msk (MA) msk(MB)

{9} {0.15 : 1, 0.16 : 1, 0.63 : 1} {0.21 : 1, 0.37 : 1, 0.53 : 1}
{2, 3} {0.22 : 2, 0.42 : 1, 0.48 : 1} {0.42 : 1, 0.48 : 1, 0.68 : 1}

...
...

...
{3, 6} {0.22 : 1, 0.42 : 2, 0.48 : 1} {0.16 : 1, 0.37 : 1, 0.48 : 1}

{1, 2, 3} {0.22 : 2, 0.32 : 1, 0.42 : 1} {0.22 : 1, 0.42 : 2, 0.48 : 2}

Example 5. We run Algorithm 3 for the same running
example given before. Given δ = 7, we want to estimate
|SA ∩≤7 SB |. Line 1 decomposes [0, 7] into two parts of
indices, which is arr = { ({3, 6}, {1, 2, 3}), ({9}, {2, 3}) }.
For ({3, 6}, {1, 2, 3}), Line 4 retrieves msk(S+3,6

A) = {0.22 :

1, 0.42 : 2, 0.48 : 1} and msk(S+1,2,3
B) = {0.22 : 1, 0.42 :

2, 0.48 : 2} from Table 5. Then Line 5 calculates t̂r according
to Theorem 2. It returns t̂r to be (1 · 1 + 2 · 2)/0.48 = 10.42.
Similar steps go for the second part indexed by ({9}, {2, 3}),
while there is no matching for this part. Finally, the algorithm
returns t̂r to be 10.42. The actual |SA ∩≤7 SB | is 11.

5. APPLICATIONS
The proposed methods have many important applications,

e.g. top-K related keywords mining, query optimization for
search engine, and system troubleshooting in log analysis.
In this section, we present the details of efficient mining
top-K related keywords from a document collection.

Let V be the vocabulary of the document collection.
For ease of illustration, we concatenate all documents into
one single document D with suitable padding of out-of-
vocabulary keywords. For each keyword v ∈ V, we create
a set Sv, which consists of all the positions in D where it
occurs. Let query SQ be a set of positions. For any given
keyword v, we can measure its correlation with the query
by counting the number of occurrences of v in a δ-vicinity of
any position in SQ. The top-K related keywords problem is
to find the K keywords in V that has the highest correlation.

Solving the problem exactly requires either intersecting
all keywords in V or retrieving the δ-vicinity centered at
positions in SQ. Neither method scales well with large
document collections.

To solve the problem approximately, we can apply range
estimation to estimate the correlation, then return the K
keywords with largest estimated size. Nevertheless, this
method is still time consuming, as it is linear to vocabulary
size |V|.

We observe that most of the keywords set do not have a
significant gapped intersection size with the query, hence it
is highly likely that their sketches share no common hash
value with the sketch of the query. It is thus desirable to
consider only those keywords that share at least one hash

value in their appropriate multiset bottom-k sketches with
the bottom-k sketch of the query.

Therefore, we propose to build an inverted index, which
maps (hashValue , index) to a keyword v. Intuitively, by
probing the inverted index with every hash value in SQ’s
sketch, we can obtain a list of candidate keywords. Due
to the range decomposition, we also have the additional
constraint that the indices of these shared hash values must
agree with those calculated for the current δ (i.e., returned
by DecomposeRange).

Algorithm 4: TopKRangeEstimation (SQ, δ, K, I)

Input : SQ: sets of query positions; δ: query gap; K:
top-K; I : the inverted index that maps hash
values (and sketch’s indices) to a keyword.

Output: Top-K keywords based on their estimated
intersection size with SQ

R← ∅; Cand ← ∅ ;1

arr← DecomposeRange(δ) ;2

for each (iA, iB) ∈ arr do3

Retrieve SQ’s multiset4

bottom-k sketch whose index value is iA into MQ;
for each element e ∈ elems(msk(Mq)) do5

Cand ← Cand ∪ I [(e, iB)];6

/* A list of keywords will
be returned by looking up the index I */;

for each keyword v ∈ Cand do7

R← R∪ (v,RangeQueryOnlineEstimation(SQ, Sv, δ));8

return the K largest9

entries in R in terms of the estimated intersection size;

Algorithm 4 gives the pseudocode for the algorithm. Ini-
tially the candidate set Cand is empty (Line 1). In Line 2, we
obtain one or two pairs of indices, indexing into SQ’s and a
potential candidate set’s multiset bottom-k sketches. We it-
erate over all the pairs. For each pair of indices, we use iA to
retrieve the sketch of SQ, and use Line 5–6 to retrieve all key-
words such that their sketches with index value iB share the
same hash value (i.e., e in the code). This step is aided by the
precomputed inverted index as a simple index lookup. Fi-
nally, we perform range estimate between SQ and the set of
each candidate keywords and return the largest K keywords.

The algorithm issues at most 2k − 2 index lookups, and
performs |Cand | number of range estimations, where |Cand |
is the size of the candidate set. Finding the top-K entries
from R and sorting them take O(K logK) time. Therefore,
the total estimation time is O(|Cand | · k +K logK).

In our implementation, we also perform the following
optimizations. For every keyword returned from the index
lookup (Line 6), we can accumulate its partial inner product
with the query’s sketch (i.e., the numerator of Eq. (3)). It
can be shown that the numerator’s value will be correctly
calculated after the loop of Lines 3–6 ends. Therefore, the
RangeQueryOnlineEstimation function only needs to do O(1)
computation to get the range estimation for each candidate.

Example 6. Using the same example, we can build the
inverted index as shown in Table 6.

Consider the top-1 related keyword query for A with
δ = 5. DecomposeRange gives us one pair of indices
({3, 6}, {1, 2, 3}). This means we are concerned with the
query’s sketch indexed by {3, 6} and the candidate’s sketch

indexed by {1, 2, 3}. We load the query sketch msk(S+3,6
A) =

1357

Table 6: Inverted Index for top-K Related Keyword
Mining

Key List of Keywords

(0.15, {9}) SA

(0.16, {3, 6}) SB

(0.16, {9}) SA

(0.21, {9}) SB

(0.22, {1, 2, 3}) SA, SB

(0.22, {2, 3}) SA

(0.22, {3, 6}) SA

.

{ 0.22 : 1, 0.42 : 2, 0.48 : 1 }. We issue three lookups with
keys: (0.22, {1, 2, 3}), (0.42, {1, 2, 3}), and (0.48, {1, 2, 3}).
These lookups find matches SB, which is added to the
candidate set. Finally we perform range estimation between
the query and the candidates then return the top-1 keyword.

6. EXPERIMENTAL EVALUATION
In this section, we present the results of a comprehensive

performance study to evaluate the efficiency and effective-
ness of the proposed techniques.

6.1 Experiment Setup
We use the following algorithms for point and range

estimation.

• GSISE-k is our proposed point (range) estimation method
and k determines the size of a single bottom-k sketch.
• PointSum-k is our basic range estimation methods by

summing up multiple point estimation results.
• Exact calculates the exact answer for point and range

estimation, respectively.

We use the following algorithms for the top-K related
keyword query.

• TopK is the hash table based top-K range estimation
method proposed in Section 5.
• Exacttopk is the exact algorithm for top-K range estima-

tion. The algorithm is conducted by scanning the whole
dataset, finding each occurrence of the query keyword,
and bookkeeping the count of every other keyword that
occurs within the δ neighborhood. Finally, it returns the
K keywords with highest number of occurrences.

The dataset we use is a subset of the ClueWeb con-
taining 500 million English web pages from the ClueWeb09
collection.3 We remove infrequent keywords and keep the
100k most frequent keywords. We build the positional
inverted index for these keywords, and treat each inverted
list as a set. We then build three sets of sketches on these
sets, i.e., point sketch, range sketch, and top-K sketch for
the respective estimation problems.

The complete original positional index requires more than
2 days to construct using Hadoop on a cluster of 20 PCs,
and the final index is stored on the HDFS of the Hadoop
cluster. Without compression, the overall index consumes
around 1TB space, which is impossible to load into a single
commodity PC’s memory. The overall size of the sketch is
small enough to fit into our testing environment with 96GB
RAM. Therefore, the experiments conducted on the sketches
are memory-based, while exact algorithms that processes
inverted lists or scanning documents have to use disk I/Os.

3
http://lemurproject.org/clueweb09.php

Estimation Workload. We randomly select 100 pairs of
keywords to perform point and range estimation with differ-
ent parameter settings on their corresponding sets. We set
maximum gap N = 100. k varies between 1,000 to 100,000
(default). The query gap δ varies between 20 and 100.

We measure the running time and relative error for
point and range estimation methods. We measure recall
and extended recall for TopK methods. Recall is defined
as AK/K, where AK is the number of exact top-K results
returned by an algorithm that outputs K results. The
extended recall is defined by AL×K/K, where AL×K is the
number of exact top-K results returned by an algorithm
that outputs L × K results, L is the extension rate. All
measurements shown are averaged over 100 queries.

The experiment parameter settings of the evaluated algo-
rithms are listed in Table 7, where the default parameters
are highlighted in bold.

Table 7: Parameter Settings
Parameters Setting (Defaults are in bold)

maximum gap 100
top-K 1, 10, 100
bottom-k 1000, 5000, 10000, 15000, 20000
query gaps 20, 40, 60, 80, 100

6.2 Point Estimation
In Figure 2(a), we show the point estimation time by

varying query gaps. Compared with the exact algorithm,
the sketch based method is more than 2 order of magnitudes
faster. Query gaps do not affect the estimation time and
exact time. As both exact and estimation methods rely on
intersection algorithm of complexity O(k) to find common
elements. GSISE-1k, GSISE-5k, GSISE-10k, GSISE-15k, and
GSISE-20k spend 0.38, 1.66, 3.47, 5.03 and 6.92 milliseconds
to perform one estimation. The trend is linear. Average
length of inverted list size is around 2.5 million, which is
125 times of GSISE-20k’s sketch size. Meanwhile, Exact
algorithm uses 892ms to calculate exact answer, which
is 892/6.92 = 128 times of GSISE-20k’s estimation time.
When dataset size increases, exact results will need longer
time, while the sketch estimation time is immune to the
increasing dataset size.

In Figure 2(b) and figure 2(c), we show how the relative
error decreases while the bottom-k sketch size is increasing.
When gap is 80, the relative error drops from 1 to 0.4 with k
changing from 1000 to 20, 000. By further increasing k up to
100, 000, the relative error reduces to less than 0.19. Based
on the analysis in section 3.2, the relative error is inverse
proportional to the square root of bottom-k size. Despite
the fluctuation, relative error is not affected by the different
query gaps, the fluctuation is caused by different intersec-
tion sizes at different gaps. In our experiments, gap 40 has
slightly more intersections than gap 100, which reflects that
gap 40 has slightly less relative error than gap 100.

6.3 Range Estimation
From Figure 2(d) to 2(f), we present range query

estimation results.
• Time. Figure 2(d) shows that our GSISE range estima-

tion method has the best performance compared to other
methods. For example, GSISE-20k is 128 times faster than
Exact and 108 times faster than PointSum-20k when gap
is 100. Similar to point estimation, GSISE is stable with
different gaps. According to Algorithm 2, any range query

1358

can be decomposed into at most two estimation queries,
and the efficiency of estimation only relies on k. PointSum
performs individual point estimations for each gap and
uses the summation as the estimation result. Thus the
processing time of PointSum is linear to the query gap.
When gap is 20, 40, 60, 80 and 100, the processing time of
PointSum-20k is 109.0, 213.1, 302.7, 410.6, and 508.0 mil-
liseconds, which is linearly increasing with respect to gap.
• Relative Error. As shown in Figure 2(e), when query

gap increases, the relative errors of all methods decrease.
This is because larger range gap tends to result in larger
intersection size. According to Theorem 3, it is equivalent
to using a larger k.

It is noted that PointSum achieves slightly lower relative
error than range estimation given the same k setting. The
reason is that PointSum utilizes all values in the point
shifted sketch for estimating, which is equivalent to merg-
ing without truncating at k-th hash value. As opposed to
the truncated merge operation applied to GSISEr index,
PointSum will consume up to more than λ times space.To
be more specific, in Figure 2(e), when query gap is 100,
the range sketch required for GSISE-20k is 2× 20k, while
for PointSum, the cost is 20×20k. However, the PointSum-
20k only decrease the error by less than 0.05. Considering
the tremendous performance gain in efficiency and
storage, the tiny sacrifice in relative error can be ignored.

Figure 2(f) shows similar trend as Figure 2(c). Larger
k will lead to smaller relative error. The relative error
decreases rapidly at the initial increasing of k, then
flattens after k > 10, 000. PointSum has smaller relative
error than GSISE methods, however, the relative errors
are almost the same when k is large. Interestingly, the
storage cost of PointSum-1k of gap 100(20 × 1k = 20k)
and of GSISE-10k of gap 100(2 × 10k = 20k) are the
same, so are the relative error of PointSum-1k of gap 100
and GSISE-10k, which are 0.267 and 0.266, respectively.

6.4 Top-K Related Keywords Mining
The experiment results of top-K problem are presented

in Figures 2(g) to 2(o).

• Time. In Figures 2(g), 2(j) and 2(m), we investigate
the response time by varying K of top-K from 1 to
100. In general, we can see that the average query
processing time is under 25 milliseconds, which is quite
small compared to Exacttopk. In fact, as we use large web
page corpus, the Exacttopk algorithm must run on the
cluster in a batch mode for the given queries, which takes
6 hours to scan through the original documents in order
to output top-K results. In each figure, by increasing the
query gaps from 20 to 100, we observe that the query
processing time increases slightly. This is due to the
processing of top-K range estimation needs to count
the number of common sketch values in the hash table.
Larger query gap will result in larger intersection size,
which means more common sketch values when looking
up the hash table. Same reason goes for the increasing
query processing time when k increases.
• Recall. We show the recall of our algorithms in different

top-K settings in Figures 2(h), 2(k) and 2(n). We can ob-
serve that the recall grows with the increase of k. Larger
k incurs smaller relative error, consequently improves the
recall of the top-K algorithms. Furthermore, it is observed
that query gap has no influence on the recall, which shows
great stability over different query gap settings.

• Extended Recall. As shown in Figure 2(g) and Fig-
ure 2(m), the processing time of returning top 1 result and
top 100 results are similar. This gives us the motivation
of measuring extended recall. Figures 2(i), 2(l) and 2(o),
present the extended recall. The extension rate is up to 4.
In Figure 2(i), when extension rate is larger than 3, the
recall of GSISE-15k and GSISE-20k both reach 90%. In
other figures, all GSISE-20k experiments can reach more
than 80% of recall when extension rate is 4. GSISE-1k
performs inadequate even when extension rate reaches 4.

In summary, our top-K estimation algorithm shows
substantial performance advantage over exact methods
in efficiency. Meanwhile, the recall of our algorithms
can reach around 90% with slight extension of returned
top-K results.

7. CONCLUSIONS
In this paper, we formally define the GSISE problem, for

both point and range gap constraints. We propose space
and time efficient estimation methods, based on bottom-k
sketches and its extension to multisets. In addition,
our estimation methods provide the probabilistic quality
guarantees. We also apply our technique to the problem of
finding top-K related keyword, by combining our estimation
technique with the use of an inverted index. Our experi-
ments using half a billion documents empirically verify the
effectiveness and efficiency of the proposed methods.

Acknowledgements. We would like to thank Stefan Böttcher
for helpful discussions and comments during our project coop-
eration. This work has been supported by Go8-DAAD Project
RG123842, UNSW ECR/FRG PS35163, and ARC Discovery
Projects DP130103401 and DP130103405.

8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency moments. In STOC, 1996.
[2] J. Barbay, A. López-Ortiz, and T. Lu. Faster adaptive set

intersections for text searching. In WEA, 2006.
[3] J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. An

experimental investigation of set intersection algorithms for
text searching. Journal of Experimental Algorithmics, 14,
2009.

[4] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation under
multiset operations. In SIGMOD Conference, 2007.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzen-
macher. Min-wise independent permutations (extended
abstract). In Symposium on the Theory of Computing, 1998.

[6] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. J. Comput. Syst. Sci.,
55(3), 1997.

[7] E. Cohen and H. Kaplan. Summarizing data using bottom-k
sketches. In PODC, 2007.

[8] E. Cohen and H. Kaplan. Tighter estimation using bottom k
sketches. PVLDB, 1(1), 2008.

[9] E. Cohen and H. Kaplan. Leveraging discarded samples
for tighter estimation of multiple-set aggregates. In
SIGMETRICS/Performance, 2009.

[10] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applica-
tions. In LATIN, 2004.

[11] J. S. Culpepper and A. Moffat. Efficient set intersection for
inverted indexing. ACM Trans. Inf. Syst., 29(1), 2010.

[12] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive
set intersections, unions, and differences. In SODA, 2000.

[13] B. Ding and A. C. König. Fast set intersection in memory.
PVLDB, 4(4), 2011.

1359

 0.1

 1

 10

 100

 1000

20 40 60 80 100

Ti
me

 (
ms

)

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

Exact

(a) Point Estimation Time

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

20 40 60 80 100

Er
ro

r
Ra

te

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(b) Point Estimation Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

1k 10k 20k 40k 60k 80k 100k

Er
ro

r
Ra

te

Bottom K size

GSISE Gap 20

GSISE Gap 60

GSISE Gap 100

(c) Point Estimation Relative Error

 1

 10

 100

 1000

20 40 60 80 100

Ti
me

 (
ms

)

Gap

GSISE-1k

GSISE-10k

GSISE-20k

Exact

PointSum-20k

(d) Range Estimation Time

 0.2

 0.4

 0.6

 0.8

 1

 1.2

20 40 60 80 100

Er
ro

r
Ra

te
Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

PointSum-20k

(e) Range Estimation Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

1000 5000 10000 15000 20000

Er
ro

r
Ra

te

Bottom K size

GSISE Gap 20

GSISE Gap 60

GSISE Gap 100

PointSum Gap 20

PointSum Gap 60

PointSum Gap 100

(f) Range Estimation Relative Error

 0

 5

 10

 15

 20

 25

20 40 60 80 100

Ti
me

 (
ms

)

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(g) Top 1 Query Time

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

20 40 60 80 100

Re
c
a
ll

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(h) Top 1 Query Recall

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4

Re
c
a
ll

Extension Rate

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(i) Top 1 Query Extended Recall

 0

 5

 10

 15

 20

 25

20 40 60 80 100

Ti
me

 (
ms

)

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(j) Top 10 Query Time

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

20 40 60 80 100

Re
c
a
ll

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(k) Top 10 Query Recall

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4

Re
c
a
ll

Extension Rate

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(l) Top 10 Query Extended Recall

 0

 5

 10

 15

 20

 25

20 40 60 80 100

Ti
me

 (
ms

)

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(m) Top 100 Query Time

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

20 40 60 80 100

Re
c
a
ll

Gap

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(n) Top 100 Query Recall

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4

Re
c
a
ll

Extension Rate

GSISE-1k

GSISE-5k

GSISE-10k

GSISE-15k

GSISE-20k

(o) Top 100 Query Extended Recall

Figure 2: Experiment Results

[14] D. Dubhashi and D. Ranjan. Balls and bins: A study in
negative dependence. Random Structures and Algorithms,
13:99–124, 1996.

[15] R. Fagin. Combining fuzzy information from multiple
systems. J. Comput. Syst. Sci., 58(1), 1999.

[16] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation al-
gorithms for middleware. J. Comput. Syst. Sci., 66(4), 2003.

[17] J.-L. Hou and C.-A. Chan. Method for keyword correlation
analysis. US Patent 20050071365 A1, 2005.

[18] F. K. Hwang and S. Lin. A simple algorithm for merging two
disjoint linearly-ordered sets. SIAM J. Comput., 1(1), 1972.

[19] P. Indyk et al. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC, 1998.

[20] Y. Luo, W. Wang, X. Lin, X. Zhou, J. Wang, and K. Li.
SPARK2: top-k keyword query in relational databases.
IEEE Trans. Knowl. Data Eng., 23(12), 2011.

[21] D. Okanohara and Y. Yoshida. Conjunctive filter: Breaking
the entropy barrier. In ALENEX, 2010.

[22] R. Pagh, M. Stöckel, and D. P. Woodruff. Is min-wise
hashing optimal for summarizing set intersection? In PODS,
2014.

[23] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and
K. Nørv̊ag. Efficient processing of top-k spatial preference
queries. PVLDB, 4(2), 2010.

[24] B. Schlegel, T. Willhalm, and W. Lehner. Fast sorted-set
intersection using SIMD instructions. In ADMS, 2011.

[25] M. Sudhof, A. G. Emilsson, A. L. Maas, and C. Potts.
Sentiment expression conditioned by affective transitions
and social forces. In SIGKDD, 2014.

[26] D. Takuma and H. Yanagisawa. Faster upper bounding of
intersection sizes. In SIGIR, 2013.

[27] M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and
G. Weikum. Topx: efficient and versatile top-k query
processing for semistructured data. VLDB J., 17(1), 2008.

[28] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set
similarity joins. In ICDE, 2009.

1360

